1
|
Ragucci S, Landi N, Di Maro A. Myoglobin as a molecular biomarker for meat authentication and traceability. Food Chem 2024; 458:140326. [PMID: 38970962 DOI: 10.1016/j.foodchem.2024.140326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The global incidence of economically motivated meat adulteration represents a crucial issue for the food industry. Undeclared addition of cheaper or low-quality species to meat products of high commercial value has become a common practice that needs to be countered with specific measures. In this framework, myoglobin (Mb) is a sarcoplasmic haemoprotein, primarily responsible for meat colour and has been successfully used in meat fraud authentication. Mb is highly soluble in water, easily monitored at 409 nm and species-specific. Knowing that various analytical DNA-based and protein-based methods, as well as spectroscopic techniques have been developed over the years for the detection of meat fraud, the aim of the present review is to take stock of the situation regarding the possible use of Mb as a molecular biomarker for the easy and rapid detection of undeclared species in meat products, avoiding the need of sophisticated or expensive equipment and specialised operators.
Collapse
Affiliation(s)
- Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100-Caserta, Italy..
| | - Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100-Caserta, Italy.; Institute of Crystallography, National Research Council of Italy, Via Vivaldi 43, 81100-Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100-Caserta, Italy..
| |
Collapse
|
2
|
Suratno, Windarsih A, Warmiko HD, Khasanah Y, Indrianingsih AW, Rohman A. Metabolomics and Proteomics Approach Using LC-Orbitrap HRMS for the Detection of Pork in Tuna Meat for Halal Authentication. FOOD ANAL METHOD 2023. [DOI: 10.1007/s12161-023-02472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
3
|
Pu K, Qiu J, Tong Y, Liu B, Cheng Z, Chen S, Ni WX, Lin Y, Ng KM. Integration of Non-targeted Proteomics Mass Spectrometry with Machine Learning for Screening Cooked Beef Adulterated Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2173-2182. [PMID: 36584280 DOI: 10.1021/acs.jafc.2c06266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The degradation of ingredients in heat-processed meat products makes their authentication challenging. In this study, protein profiles of raw beef, chicken, duck, pork, and binary simulated adulterated beef samples (chicken-beef, duck-beef, and pork-beef) and their heat-processed samples were obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Heat-stable characteristic proteins were found by screening the overlapping characteristic protein ion peaks of the raw and corresponding heat-processed samples, which were discovered by partial least-squares discriminant analysis. Based on the 36 heat-stable characteristic proteins, qualitative classification for the raw and heat-processed meats was achieved by extreme gradient boosting. Moreover, quantitative analysis via partial least squares regression was applied to determine the adulteration ratio of the simulated adulterated beef samples. The validity of the approach was confirmed by a blind test with the mean accuracy of 97.4%. The limit of detection and limit of quantification of this method were determined to be 5 and 8%, respectively, showing its practical aspect for the beef authentication.
Collapse
Affiliation(s)
- Keyuan Pu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong Province 515063, P. R. China
| | - Jiamin Qiu
- Department of Biology, Shantou University, Shantou, Guangdong Province 515063, P. R. China
| | - Yongqi Tong
- Department of Biology, Shantou University, Shantou, Guangdong Province 515063, P. R. China
| | - Bolin Liu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong Province 515063, P. R. China
| | - Zibin Cheng
- Department of Biology, Shantou University, Shantou, Guangdong Province 515063, P. R. China
| | - Siyu Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong Province 515063, P. R. China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong Province 515041, P. R. China
| | - Yan Lin
- The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province 515041, P. R. China
| | - Kwan-Ming Ng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong Province 515063, P. R. China
| |
Collapse
|
4
|
Orusmurzaeva Z, Maslova A, Tambieva Z, Sadykova E, Askhadova P, Umarova K, Merzhoeva A, Albogachieva K, Ulikhanyan K, Povetkin S. Investigation of the chemical composition and physicochemical properties of Chlorella vulgaris biomass treated with pulsed discharges technology for potential use in the food industry. POTRAVINARSTVO 2022. [DOI: 10.5219/1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The use of chlorella as a dietary supplement has great prospects. Nevertheless, the processing of chlorella is associated with certain difficulties that limit its use on an industrial scale. Problems with the processing are primarily related to the thick and strong cell wall of chlorella (50-100 nm), which is poorly digested by most vertebrate species due to its complex multilayer structure. Our experiments have shown that discharge pulse treatment contributes to the destruction of the strong cell wall of chlorella. The results of atomic force microscopy and the determination of the antioxidant activity of the suspension confirm this. A study of the chemical composition of dried chlorella biomass showed a content of 56.8% protein and 12.6% fat, which causes a high nutritional value of chlorella. The study of the physicochemical properties of the prepared chlorella preparation showed pronounced hydrophilicity of proteins. Observation of gels with different contents of chlorella preparation, formed during heating and subsequent cooling and stored for seven days at +8 °C, showed that the gels do not emit a synergistic liquid. Total gels based on the chlorella preparation are characterized by high stability. Based on the results obtained, we concluded that the preparation based on disintegrated chlorella has a high potential for functional and technological application in food technologies
Collapse
|
5
|
Novel immunochromatographic estimation of lamb content in meat products using IgG as biomarker. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. Molecules 2022; 27:molecules27082411. [PMID: 35458608 PMCID: PMC9031286 DOI: 10.3390/molecules27082411] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mass Spectrometry (MS) allows the analysis of proteins and peptides through a variety of methods, such as Electrospray Ionization-Mass Spectrometry (ESI-MS) or Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). These methods allow identification of the mass of a protein or a peptide as intact molecules or the identification of a protein through peptide-mass fingerprinting generated upon enzymatic digestion. Tandem mass spectrometry (MS/MS) allows the fragmentation of proteins and peptides to determine the amino acid sequence of proteins (top-down and middle-down proteomics) and peptides (bottom-up proteomics). Furthermore, tandem mass spectrometry also allows the identification of post-translational modifications (PTMs) of proteins and peptides. Here, we discuss the application of MS/MS in biomedical research, indicating specific examples for the identification of proteins or peptides and their PTMs as relevant biomarkers for diagnostic and therapy.
Collapse
|
7
|
Sangaré M, Karoui R. Evaluation and monitoring of the quality of sausages by different analytical techniques over the last five years. Crit Rev Food Sci Nutr 2022; 63:8136-8160. [PMID: 35333686 DOI: 10.1080/10408398.2022.2053059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sausages are among the most vulnerable and perishable products, although those products are an important source of essential nutrients for human organisms. The evaluation of the quality of sausages becomes more and more required by consumers, producers, and authorities to thwarter falsification. Numerous analytical techniques including chemical, sensory, chromatography, and so on, are employed for the determination of the quality and authenticity of sausages. These methods are expensive and time consuming, and are often sensitive to significant sources of variation. Therefore, rapid analytical techniques such as fluorescence spectroscopy, near infrared (NIR), mid infrared (MIR), nuclear magnetic resonance (NMR), among others were considered helpful tools in this domain. This review will identify current gaps related to different analytical techniques in assessing and monitoring the quality of sausages and discuss the drawbacks of existing analytical methods regarding the quality and authenticity of sausages from 2015 up to now.
Collapse
Affiliation(s)
- Moriken Sangaré
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, BioEcoAgro, Lens, France
- Institut Supérieur des Sciences et Médecine Vétérinaire de Dalaba, Département de Technologie et Contrôle des Produits Alimentaires, DTCPA, ISSMV/Dalaba, Guinée
- Univ. Gamal Abdel Nasser de Conakry, Guinée, Uganc, Guinée
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, BioEcoAgro, Lens, France
| |
Collapse
|
8
|
Zhang Y, Liu M, Wang S, Kang C, Zhang M, Li Y. Identification and quantification of fox meat in meat products by liquid chromatography-tandem mass spectrometry. Food Chem 2022; 372:131336. [PMID: 34818744 DOI: 10.1016/j.foodchem.2021.131336] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/02/2021] [Accepted: 10/03/2021] [Indexed: 12/16/2022]
Abstract
Over the years, food adulteration has become an important global problem, threatening public health safety and the healthy development of food industry. This study established a liquid chromatography-tandem mass (LC-MS/MS) method for accurate identification and quantitative analysis of fox meat products. High-resolution mass was used for data collection, and Proteome Discoverer was used for data analysis to screen fox-specific peptides. Multivariate statistical analysis was conducted using the data obtained from the label-free analysis of different contents of simulated samples. Samples with different contents were distinguished without interfering with each other, suggesting the feasibility of quantitative analysis of fox meat content. The linear correlation coefficient and recovery rate were calculated to determine the fox peptides that can be used for accurate quantification. The established LC-MS/MS method can be used for the accurate identification and quantification of actual samples. In addition, this method can provide technical support for law enforcement departments.
Collapse
Affiliation(s)
| | - Mengyao Liu
- China Meat Research Center, 100068 Beijing, China
| | - Shouwei Wang
- China Meat Research Center, 100068 Beijing, China
| | - Chaodi Kang
- China Meat Research Center, 100068 Beijing, China
| | | | - Yingying Li
- China Meat Research Center, 100068 Beijing, China.
| |
Collapse
|
9
|
Chen C, Ma JX, Wang H, Liu HQ, Ren SW, Cao JT, Liu YM. A spatially resolved ratiometric electrochemiluminescence immunosensor for myoglobin detection using Au@Ag 2S as signal amplification tags. NEW J CHEM 2022. [DOI: 10.1039/d2nj02918a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A spatially resolved ratiometric ECL immunosensor for myoglobin detection was developed via resonance energy transfer for signal amplification.
Collapse
Affiliation(s)
- Chen Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, China
| | - Jin-Xin Ma
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, China
| | - Hui-Qiao Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, China
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang, 464000, China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
10
|
Kumari S, Kumar RR, Mendiratta SK, Kumar D, Kumar A, Jawla J, Anurag, Rana P, Kumar D. Development of loop-mediated isothermal method and comparison with conventional PCR assay for rapid on spot identification of tissue of cattle origin. Journal of Food Science and Technology 2021; 58:4608-4615. [PMID: 34629525 DOI: 10.1007/s13197-020-04948-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/24/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) is a diagnostic method for meat speciation with rapid and minimal equipment requirements. In this study, we developed cattle-specific tube-based LAMP assays targeting mitochondrial Cyt b gene sequence, compared with conventional PCR assay for specificity, sensitivity, and validation of the assay was made. The LAMP reaction was carried at 64 °C for 45 min, and results were confirmed by SYBR Green I dye and agarose gel-electrophoresis. The specificity of the assays was cross-tested with DNA of buffalo, goat, sheep, and pork. The amplification was observed with samples from cattle only without cross-reactivity with other meat species. The analytical sensitivity of LAMP and PCR method for cattle DNA detection was 0.0001 ng and 1 ng, respectively. Repeatability of the assay was achieved on samples from known/blind and admixture meat with other than cattle at the relative percentage of 20%, 10%, 5%, and 1%. The study concluded that the developed assay can be easily employed for the rapid identification of tissue of cattle origin in meat and meat products in low resource areas.
Collapse
Affiliation(s)
- Sarita Kumari
- Division of Livestock Products Technology, Indian Veterinary Research Institute, Izatngar, Bareilly, 243122 India.,Division of Livestock Products Technology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, 334001 India
| | - R R Kumar
- Division of Livestock Products Technology, Indian Veterinary Research Institute, Izatngar, Bareilly, 243122 India
| | - S K Mendiratta
- Division of Livestock Products Technology, Indian Veterinary Research Institute, Izatngar, Bareilly, 243122 India
| | - Dhananjay Kumar
- Division of Livestock Products Technology, Indian Veterinary Research Institute, Izatngar, Bareilly, 243122 India
| | - Arun Kumar
- Division of Livestock Products Technology, Indian Veterinary Research Institute, Izatngar, Bareilly, 243122 India.,Division of Livestock Products Technology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, 334001 India
| | - Jyoti Jawla
- Division of Livestock Products Technology, Indian Veterinary Research Institute, Izatngar, Bareilly, 243122 India
| | - Anurag
- Division of Livestock Production Management, Rajasthan University of Veterinary and Animal Sciences, Bikaner, 334001 India
| | - Preeti Rana
- Division of Livestock Products Technology, Indian Veterinary Research Institute, Izatngar, Bareilly, 243122 India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatngar, Bareilly, 243122 India
| |
Collapse
|
11
|
Valletta M, Ragucci S, Landi N, Di Maro A, Pedone PV, Russo R, Chambery A. Mass spectrometry-based protein and peptide profiling for food frauds, traceability and authenticity assessment. Food Chem 2021; 365:130456. [PMID: 34243122 DOI: 10.1016/j.foodchem.2021.130456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/03/2023]
Abstract
The ever-growing use of mass spectrometry (MS) methodologies in food authentication and traceability originates from their unrivalled specificity, accuracy and sensitivity. Such features are crucial for setting up analytical strategies for detecting food frauds and adulterations by monitoring selected components within food matrices. Among MS approaches, protein and peptide profiling has become increasingly consolidated. This review explores the current knowledge on recent MS techniques using protein and peptide biomarkers for assessing food traceability and authenticity, with a specific focus on their use for unmasking potential frauds and adulterations. We provide a survey of the current state-of-the-art instrumentation including the most reliable and sensitive acquisition modes highlighting advantages and limitations. Finally, we summarize the recent applications of MS to protein/peptide analyses in food matrices and examine their potential in ensuring the quality of agro-food products.
Collapse
Affiliation(s)
- Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|
12
|
Comparative database search engine analysis on massive tandem mass spectra of pork-based food products for halal proteomics. J Proteomics 2021; 241:104240. [PMID: 33894373 DOI: 10.1016/j.jprot.2021.104240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 11/22/2022]
Abstract
Mass spectrometry-based proteomics relies on dedicated software for peptide and protein identification. These software include open-source or commercial-based search engines; wherein, they employ different algorithms to establish their scoring and identified proteins. Although previous comparative studies have differentiated the proteomics results from different software, there are still yet studies specifically been conducted to compare and evaluate the search engine in the field of halal analysis. This is important because the halal analysis is often using commercial meat samples that have been subjected to various processing, further complicating its analysis. Thus, this study aimed to assess three open-source search engines (Comet, X! Tandem, and ProteinProspector) and a commercial-based search engine (ProteinPilot™) against 135 raw tandem mass spectrometry data files from 15 types of pork-based food products for halal analysis. Each database search engine contained high false-discovery rate (FDR); however, a post-searching algorithm called PeptideProphet managed to reduce the FDR, except for ProteinProspector and ProteinPilot™. From this study, the combined database search engine (executed by iProphet) reveals a thorough protein list for pork-based food products; wherein the most abundant proteins are myofibrillar proteins. Thus, this proteomics study will aid the identification of potential peptide and protein biomarkers for future precision halal analysis. SIGNIFICANCE: A critical challenge of halal proteomics is the availability of a database to confirm the inferential peptides as well as proteins. Currently, the established database such as UniProtKB is related to animal proteome; however, the halal proteomics is related to the highly processed meat-based food products. This study highlights the use of different database search engines (Comet, X! Tandem, ProteinProspector, and ProteinPilot™) and their respective algorithms to analyse 135 raw tandem mass spectrometry data files from 15 types of pork-based food products. This is the first attempt that has compared different database search engines in the context of halal proteomics to ensure the effectiveness of controlling the FDR. Previous studies were just focused on the advantages of a certain algorithm over another. Moreover, other previous studies also have mainly reported the use of mass spectrometry-based shotgun proteomics for meat authentication (the most similar field to halal analysis), but none of the studies were reported on halal aspects that used samples originated from highly processed food products. Hence, a systematic comparative study is duly needed for a more comprehensive and thorough proteomics analysis for such samples. In this study, our combinatorial approach for halal proteomics results from the different search engines used (Comet, X! Tandem, and ProteinProspector) has successfully generated a comprehensive spectral library for the pork-based meat products. This combined spectral library is freely available at https://data.mendeley.com/datasets/6dmm8659rm/3. Thus far, this is the first and new attempt at establishing a spectral library for halal proteomics. We also believe this study is a pioneer for halal proteomics that aimed at non-conventional and non-model organism proteomics, protein analytics, protein bioinformatics, and potential biomarker discovery.
Collapse
|
13
|
Stachniuk A, Sumara A, Montowska M, Fornal E. LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY BOTTOM-UP PROTEOMIC METHODS IN ANIMAL SPECIES ANALYSIS OF PROCESSED MEAT FOR FOOD AUTHENTICATION AND THE DETECTION OF ADULTERATIONS. MASS SPECTROMETRY REVIEWS 2021; 40:3-30. [PMID: 31498909 DOI: 10.1002/mas.21605] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review offers an overview of the current status and the most recent advances in liquid chromatography-mass spectrometry (LC-MS) techniques with both high-resolution and low-resolution tandem mass analyzers applied to the identification and detection of heat-stable species-specific peptide markers of meat in highly processed food products. We present sets of myofibrillar and sarcoplasmic proteins, which turned out to be the source of 105 heat-stable peptides, detectable in processed meat using LC-MS/MS. A list of heat-stable species-specific peptides was compiled for eleven types of white and red meat including chicken, duck, goose, turkey, pork, beef, lamb, rabbit, buffalo, deer, and horse meat, which can be used as markers for meat authentication. Among the 105 peptides, 57 were verified by multiple reaction monitoring, enabling identification of each species with high specificity and selectivity. The most described and monitored species by LC-MS/MS so far are chicken and pork with 26 confirmed heat-stable peptide markers for each meat. In thermally processed samples, myosin, myoglobin, hemoglobin, l-lactase dehydrogenase A and β-enolase are the main protein sources of heat-stable markers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Anna Stachniuk
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Agata Sumara
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624, Poznan, Poland
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| |
Collapse
|
14
|
Stachniuk A, Sumara A, Montowska M, Fornal E. Peptide markers for distinguishing guinea fowl meat from that of other species using liquid chromatography-mass spectrometry. Food Chem 2020; 345:128810. [PMID: 33601654 DOI: 10.1016/j.foodchem.2020.128810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
The inability to easily identify the animal species in highly processed meat products makes them highly susceptible to adulterations. Reliable methods for detecting the species origin of meat used in processed food are required to ensure adequate labelling and minimize food fraud and allergenic potential. Liquid chromatography high resolution mass spectrometry was employed to identify new heat-stable guinea-fowl-specific peptide markers that can differentiate guinea fowl meat from other commonly consumed animal species, including closely related poultry species, in highly processed food products. We identified 26 unique guinea-fowl-specific markers. The high stability of guinea-fowl-specific peptides was confirmed by analysing food products with guinea fowl meat content ranging from 4% to 100%. The findings indicate that sensitive and reliable LC-MS/MS methods can be developed for the targeted detection and quantification of guinea fowl meat in highly processed meat products.
Collapse
Affiliation(s)
- Anna Stachniuk
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Agata Sumara
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| |
Collapse
|
15
|
Čapla J, Zajác P, Čurlej J, Belej Ľ, Kročko M, Bobko M, Benešová L, Jakabová S, Vlčko T. Procedures for the identification and detection of adulteration of fish and meat products. POTRAVINARSTVO 2020. [DOI: 10.5219/1474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The addition or exchange of cheaper fish species instead of more expensive fish species is a known form of fraud in the food industry. This can take place accidentally due to the lack of expertise or act as a fraud. The interest in detecting animal species in meat products is based on religious demands (halal and kosher) as well as on product adulterations. Authentication of fish and meat products is critical in the food industry. Meat and fish adulteration, mainly for economic pursuit, is widespread and leads to serious public health risks, religious violations, and moral loss. Economically motivated adulteration of food is estimated to create damage of around € 8 to 12 billion per year. Rapid, effective, accurate, and reliable detection technologies are keys to effectively supervising meat and fish adulteration. Various analytical methods often based on protein or DNA measurements are utilized to identify fish and meat species. Although many strategies have been adopted to assure the authenticity of fish and meat and meat a fish products, such as the protected designation of origin, protected geographical indication, certificate of specific characteristics, and so on, the coverage is too small, and it is unrealistic to certify all meat products for protection from adulteration. Therefore, effective supervision is very important for ensuring the suitable development of the meat industry, and rapid, effective, accurate, and reliable detection technologies are fundamental technical support for this goal. Recently, several methods, including DNA analysis, protein analysis, and fat-based analysis, have been effectively employed for the identification of meat and fish species.
Collapse
|
16
|
Qin P, Xu J, Yao L, Wu Q, Yan C, Lu J, Yao B, Liu G, Chen W. Simultaneous and accurate visual identification of chicken, duck and pork components with the molecular amplification integrated lateral flow strip. Food Chem 2020; 339:127891. [PMID: 32861930 DOI: 10.1016/j.foodchem.2020.127891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 02/01/2023]
Abstract
We propose a visual strategy for simultaneous detection of multiple adulterated components in beef by integration of multiple polymerase chain reaction (mPCR) with the lateral flow strip (LFS). The primer sets for adulterated components are uniquely designed with different nucleic acid tags (NAT), enabling the amplicons with specific wobbled sequences at two opposite ends. The wobbled sequences will precisely hybridize with the pre-immobilized capture probes on T lines (T1, T2 and T3) and C line, contributing to the coloration of LFS. Taking advantages of extraordinary amplification efficiency of PCR and simplicity of LFS, common adulterated components including chicken, duck and pork can be easily detected with LOD as low as 0.01% (wt%), which is comparable to that of quantitative real-time polymerase chain reaction (qPCR) but with more simplified operations and reduced costs. The method can be extended to identification of other components by replacing the functional primer set. This method can be a useful candidate for meat quality control at the resource-limited setups.
Collapse
Affiliation(s)
- Panzhu Qin
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang 233100, PR China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Li Yao
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Qian Wu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Chao Yan
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang 233100, PR China
| | - Jianfeng Lu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Bangben Yao
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, PR China
| | - Guodong Liu
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang 233100, PR China
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
17
|
Li YC, Liu SY, Meng FB, Liu DY, Zhang Y, Wang W, Zhang JM. Comparative review and the recent progress in detection technologies of meat product adulteration. Compr Rev Food Sci Food Saf 2020; 19:2256-2296. [PMID: 33337107 DOI: 10.1111/1541-4337.12579] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Meat adulteration, mainly for the purpose of economic pursuit, is widespread and leads to serious public health risks, religious violations, and moral loss. Rapid, effective, accurate, and reliable detection technologies are keys to effectively supervising meat adulteration. Considering the importance and rapid advances in meat adulteration detection technologies, a comprehensive review to summarize the recent progress in this area and to suggest directions for future progress is beneficial. In this review, destructive meat adulteration technologies based on DNA, protein, and metabolite analyses and nondestructive technologies based on spectroscopy were comparatively analyzed. The advantages and disadvantages, application situations of these technologies were discussed. In the future, determining suitable indicators or markers is particularly important for destructive methods. To improve sensitivity and save time, new interdisciplinary technologies, such as biochips and biosensors, are promising for application in the future. For nondestructive techniques, convenient and effective chemometric models are crucial, and the development of portable devices based on these technologies for onsite monitoring is a future trend. Moreover, omics technologies, especially proteomics, are important methods in laboratory detection because they enable multispecies detection and unknown target screening by using mass spectrometry databases.
Collapse
Affiliation(s)
- Yun-Cheng Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Shu-Yan Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Fan-Bing Meng
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Da-Yu Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Yin Zhang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Wei Wang
- Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Jia-Min Zhang
- Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| |
Collapse
|
18
|
Zia Q, Alawami M, Mokhtar NFK, Nhari RMHR, Hanish I. Current analytical methods for porcine identification in meat and meat products. Food Chem 2020; 324:126664. [PMID: 32380410 DOI: 10.1016/j.foodchem.2020.126664] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
Authentication of meat products is critical in the food industry. Meat adulteration may lead to religious apprehensions, financial gain and food-toxicities such as meat allergies. Thus, empirical validation of the quality and constituents of meat is paramount. Various analytical methods often based on protein or DNA measurements are utilized to identify meat species. Protein-based methods, including electrophoretic and immunological techniques, are at times unsuitable for discriminating closely related species. Most of these methods have been replaced by more accurate and sensitive detection methods, such as DNA-based techniques. Emerging technologies like DNA barcoding and mass spectrometry are still in their infancy when it comes to their utilization in meat detection. Gold nanobiosensors have shown some promise in this regard. However, its applicability in small scale industries is distant. This article comprehensively reviews the recent developments in the field of analytical methods used for porcine identification.
Collapse
Affiliation(s)
- Qamar Zia
- A New Mind, Ash Shati, Al Qatif 32617-3732, Saudi Arabia.
| | - Mohammad Alawami
- A New Mind, Ash Shati, Al Qatif 32617-3732, Saudi Arabia; Depaartment of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | | | - Irwan Hanish
- Halal Product Research Institute, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| |
Collapse
|