1
|
Li Z, Liu T, Fan K, Geng L, Wang P, Ren F, Luo J. Preparation of pH-responsive chitosan microspheres containing aminopeptidase and their application in accelerating cheese ripening. J Dairy Sci 2024; 107:3502-3514. [PMID: 38246547 DOI: 10.3168/jds.2023-23982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Microencapsulated enzymes have been found to effectively accelerate cheese ripening. However, microencapsulated enzyme release is difficult to control, often resulting in enzyme release during cheese processing and causing texture and flavor defects. This study aims to address this issue by developing aminopeptidase-loaded pH-responsive chitosan microspheres (A-CM) for precise enzyme release during cheese ripening. An aminopeptidase with an isoelectric point (pH 5.4) close to the pH value of cheese ripening was loaded on chitosan microspheres through electrostatic interaction. Turbidity titration measurements revealed that pH 6.5 was optimal for binding aminopeptidase and microspheres, affording the highest loading efficiency of 58.16%. Various characterization techniques, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy confirmed the successful loading of aminopeptidase molecules on the chitosan microspheres. In vitro release experiments conducted during simulated cheese production demonstrated that aminopeptidase release from A-CM was pH responsive. The microspheres retained the enzyme during the coagulation and cheddaring processes (pH 5.5-6.5) and only released it after entering the cheese-ripening stage (pH 5.0-5.5). By loading aminopeptidase on chitosan microspheres, the loss rate of the enzyme in cheese whey was reduced by approximately 79%. Furthermore, compared with cheese without aminopeptidase and cheese with aminopeptidase added directly, the cheeses made with A-CM exhibited the highest proteolysis level and received superior sensory ratings for taste and smell. The content of key aroma substances, such as 2/3-methylbutanal and ethyl butyrate, in cheese with A-CM was more than 15 times higher than the others. This study provides an approach for accelerating cheese ripening through the use of microencapsulated enzymes.
Collapse
Affiliation(s)
- Zhixi Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China
| | - Tianshu Liu
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ke Fan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China
| | - Lanlan Geng
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China
| | - Pengjie Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Role of Feeding and Novel Ripening System to Enhance the Quality and Production Sustainability of Curd Buffalo Cheeses. Foods 2023; 12:foods12040704. [PMID: 36832779 PMCID: PMC9956207 DOI: 10.3390/foods12040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The buffalo dairy sector is extending its boundaries to include new buffalo cheese productions beyond mozzarella, overcoming some barriers that make cheeses expensive and unsustainable. This study aimed to evaluate the effects of both the inclusion of green feed in the diet of Italian Mediterranean buffaloes and an innovative ripening system on buffalo cheese quality, providing solutions capable of guaranteeing the production of nutritionally competitive and sustainable products. For this purpose, chemical, rheological, and microbiological analyses were carried out on cheeses. Buffaloes were fed with or without the inclusion of green forage. Their milk was used to produce dry ricotta and semi-hard cheeses, ripened according to both respective traditional (MT) and innovative methods (MI); these are based on automatic adjustments of climatic recipe guided by the continuous control of pH. Green feed enhances the nutritional profile of the final products (high content of MUFAs and PUFAs). As far as the ripening method is concerned, to our knowledge, this is the first study that tests aging chambers, commonly used for meat, for the maturing of buffalo cheeses. Results pointed out the MI validity also in this field of application, as it shortens the ripening period without negatively compromising any of desirable physicochemical properties and the safety and hygiene of the final products. Conclusively, this research highlights the benefits of diets rich in green forage on productions and provides support for the ripening optimization of buffalo semi-hard cheeses.
Collapse
|
3
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Caputo E, Meinardi CA, Mandrich L. Exogenous Enzymes in Cheese Making: An Overview. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220218111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The flavour in mature cheese results from a complex series of biochemical events that occur in the curd during ripening. More than 500 varieties of cheese are produced in the world, and each of them possesses its typical sensory characteristics. Flavour depends on milk variety, starter bacteria used in cheese-making and ripening.
Amino acids and free fatty acids (FFA) act mainly as precursors of a series of catabolic reactions, still not well understood. These reactions lead to the production of aroma compounds such as esters, fatty acids, aldehydes, alcohols, ketones, hydrocarbons, lactones, and sulphur.
Enzymes involved in all these processes are derived from milk, Lactic Acid Bacteria (LAB), Non-Starter Lactic Acid Bacteria (NSLAB), rennet, or fungi. In cheese industrial production, the milk pasteurization process leads to the removal of endogenous bacteria, therefore it is necessary to add exogenous enzymes to enrich and standardize cheeses flavour.
Here, we reviewed some exogenous enzymes used in industrial cheeses production, or which have interesting potential in cheese making and ripening.
Collapse
Affiliation(s)
- Emilia Caputo
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino, 111, 80131 Naples, Italy
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Carlos Alberto Meinardi
- Instituto de Lactología Industrial (INLAIN-UNL/CONICET) Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina.
- Instituto de Lactología Industrial (INLAIN-UNL/CONICET) Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina
| | - Luigi Mandrich
- Research Institute on Terrestrial Ecosystems IRET-CNR, Via Pietro Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
5
|
|
6
|
Jiang C, Liu M, Yan X, Bao R, Liu A, Wang W, Zhang Z, Liang H, Ji C, Zhang S, Lin X. Lipase Addition Promoted the Growth of Proteus and the Formation of Volatile Compounds in Suanzhayu, a Traditional Fermented Fish Product. Foods 2021; 10:foods10112529. [PMID: 34828810 PMCID: PMC8625596 DOI: 10.3390/foods10112529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
This work investigated the effect of lipase addition on a Chinese traditional fermented fish product, Suanzhayu. The accumulation of lactic acid and the decrease of pH during the fermentation were mainly caused by the metabolism of Lactobacillus. The addition of lipase had little effect on pH and the bacterial community structure but promoted the growth of Proteus. The addition of lipase promotes the formation of volatile compounds, especially aldehydes and esters. The formation of volatile compounds is mainly divided into three stages, and lipase had accelerated the fermentation process. Lactobacillus, Enterococcus and Proteus played an important role not only in inhibition of the growth of Escherichia-Shigella, but also in the formation of flavor. This study provides a rapid fermentation method for the Suanzhayu process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xinping Lin
- Correspondence: or ; Tel.: +86-0411-8631-8675
| |
Collapse
|
7
|
Alhelli AM, Mohammed NK, Khalil ES, Hussin ASM. Optimizing the acceleration of Cheddar cheese ripening using response surface methodology by microbial protease without altering its quality features. AMB Express 2021; 11:45. [PMID: 33751265 PMCID: PMC7984165 DOI: 10.1186/s13568-021-01205-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
Cheddar cheese proteolysis were accelerated employing Penicillium candidum PCA1/TT031 protease into cheese curd. In the present study, several of the significant factors such as protease purification factor (PF), protease concentration and ripening time were optimized via the response surface methodology (RSM). The ideal accelerated Cheddar cheese environment consisted of 3.12 PF, 0.01% (v/v) protease concentration and 0.6/3 months ripening time at 10 °C. The RSM models was verified to be the most proper methodology for the maintain of chosen Cheddar cheese. Under this experimental environment, the pH, acid degree value (ADV), moisture, water activity (aw), soluble nitrogen (SN)%, fat and overall acceptability were found to be 5.4, 6.6, 35%, 0.9348, 18.8%, 34% and 13.6, respectively of ideal Cheddar cheese. Furthermore, the predicted and experimental results were in significant agreement, which confirmed the validity and reliability of the suggested method. In spite of the difference between the ideal and commercial Cheddar cheese in the concentration of some of amino acids and free fatty acids, the sensory evaluation did not show any significant difference in aroma profile between them. ![]()
Collapse
|
8
|
Microbiota profiling and screening of the lipase active halotolerant yeasts of the olive brine. World J Microbiol Biotechnol 2021; 37:23. [PMID: 33428003 DOI: 10.1007/s11274-020-02976-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Searching for novel enzymes that could be active in organic solvents has become an area of interest in recent years. Olive brine naturally provides a suitable environment for the survival of halophilic and acidophilic microorganisms and the resulting genome is thought to be a gene source for determining the halophilic and acidophilic proteins that are active in a non-aqueous organic solvent medium, and so it has been used in several biotechnological and industrial applications. In this study, microbial analysis of natural, cracked green olive brine from the southern region of Turkey has been made by next-generation sequencing of the brine metagenome for the first time in the literature. The number of reads assigned to fungal operational taxonomic units was the highest percentage (73.04%) with the dominant representation of Ascomycota phylum (99% of fungi). Bacterial OTU was 3.56% of the reads and Proteobacteria phylum was 65% of the reads. The lipase production capacity of the yeasts that were grown on the media containing elevated concentrations of NaCl (1-3 M) was determined on a Rhodamine B-including medium. Molecular identification of the selected yeasts was performed and 90% of sequenced yeasts had a high level of similarity with Candida diddensiae, whereas 10% showed similarity to Candida boidinii. The hydrolytic lipase activities using olive oil were analyzed and both yeasts showed cell-bound lipase activity at pH 3.0.
Collapse
|
9
|
Recazens E, Mouisel E, Langin D. Hormone-sensitive lipase: sixty years later. Prog Lipid Res 2020; 82:101084. [PMID: 33387571 DOI: 10.1016/j.plipres.2020.101084] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
Hormone-sensitive lipase (HSL) was initially characterized as the hormonally regulated neutral lipase activity responsible for the breakdown of triacylglycerols into fatty acids in adipose tissue. This review aims at providing up-to-date information on structural properties, regulation of expression, activity and function as well as therapeutic potential. The lipase is expressed as different isoforms produced from tissue-specific alternative promoters. All isoforms are composed of an N-terminal domain and a C-terminal catalytic domain within which a regulatory domain containing the phosphorylation sites is embedded. Some isoforms possess additional N-terminal regions. The catalytic domain shares similarities with bacteria, fungus and vascular plant proteins but not with other mammalian lipases. HSL singularity is provided by regulatory and N-terminal domains sharing no homology with other proteins. HSL has a broad substrate specificity compared to other neutral lipases. It hydrolyzes acylglycerols, cholesteryl and retinyl esters among other substrates. A novel role of HSL, independent of its enzymatic function, has recently been described in adipocytes. Clinical studies revealed dysregulations of HSL expression and activity in disorders, such as lipodystrophy, obesity, type 2 diabetes and cancer-associated cachexia. Development of specific inhibitors positions HSL as a pharmacological target for the treatment of metabolic complications.
Collapse
Affiliation(s)
- Emeline Recazens
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Etienne Mouisel
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
10
|
Advances in Recombinant Lipases: Production, Engineering, Immobilization and Application in the Pharmaceutical Industry. Catalysts 2020. [DOI: 10.3390/catal10091032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lipases are one of the most used enzymes in the pharmaceutical industry due to their efficiency in organic syntheses, mainly in the production of enantiopure drugs. From an industrial viewpoint, the selection of an efficient expression system and host for recombinant lipase production is highly important. The most used hosts are Escherichia coli and Komagataella phaffii (previously known as Pichia pastoris) and less often reported Bacillus and Aspergillus strains. The use of efficient expression systems to overproduce homologous or heterologous lipases often require the use of strong promoters and the co-expression of chaperones. Protein engineering techniques, including rational design and directed evolution, are the most reported strategies for improving lipase characteristics. Additionally, lipases can be immobilized in different supports that enable improved properties and enzyme reuse. Here, we review approaches for strain and protein engineering, immobilization and the application of lipases in the pharmaceutical industry.
Collapse
|
11
|
Impact of the presence of oxytetracycline residues in milk destined for the elaboration of dairy products: The specific case of mature goat cheese. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2019.104595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|