1
|
Heena, Kumar N, Singh R, Upadhyay A, Giri BS. Application and functional properties of millet starch: Wet milling extraction process and different modification approaches. Heliyon 2024; 10:e25330. [PMID: 38333841 PMCID: PMC10850599 DOI: 10.1016/j.heliyon.2024.e25330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
In the past decade, the demand and interest of consumers have expanded for using plant-based novel starch sources in different food and non-food processing. Therefore, millet-based value-added functional foods are acquired spare attention due to their excellent nutritional, medicinal, and therapeutic properties. Millet is mainly composed of starch (amylose and amylopectin), which is primary component of the millet grain and defines the quality of millet-based food products. Millet contains approximately 70 % starch of the total grain, which can be used as a, ingredient, thickening agent, binding agent, and stabilizer commercially due to its functional attributes. The physical, chemical, and enzymatic methods are used to extract starch from millet and other cereals. Numerous ways, such as non-thermal physical processes, including ultrasonication, HPP (High pressure processing) high-pressure, PEF (Pulsed electric field), and irradiation are used for modification of millet starch and improve functional properties compared to native starch. In the present review, different databases such as Scopus, Google Scholar, Research Gate, Science Direct, Web of Science, and PubMed were used to collect research articles, review articles, book chapters, reports, etc., for detailed study about millet starch, their extraction (wet milling process) and modification methods such as physical, chemical, biological. The impact of different modification approaches on the techno-functional properties of millet starch and their applications in different sectors have also been reviewed. The data and information created and aggregated in this study will give users the necessary knowledge to further utilize millet starch for value addition and new product development.
Collapse
Affiliation(s)
- Heena
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Nishant Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Rakhi Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Balendu Shekher Giri
- Sustainability Cluster, Department of Civil Engineering, School of Engineering, University of Petroleum and Energy (UPES), Dehradun, Uttarakhand 248007, India
| |
Collapse
|
2
|
Diaz-Baca JA, Fatehi P. Production and characterization of starch-lignin based materials: A review. Biotechnol Adv 2024; 70:108281. [PMID: 37956796 DOI: 10.1016/j.biotechadv.2023.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
In their pristine state, starch and lignin are abundant and inexpensive natural polymers frequently considered green alternatives to oil-based and synthetic polymers. Despite their availability and owing to their physicochemical properties; starch and lignin are not often utilized in their pristine forms for high-performance applications. Generally, chemical and physical modifications transform them into starch- and lignin-based materials with broadened properties and functionality. In the last decade, the combination of starch and lignin for producing reinforced materials has gained significant attention. The reinforcing of starch matrices with lignin has received primary focus because of the enhanced water sensitivity, UV protection, and mechanical and thermal resistance that lignin introduces to starch-based materials. This review paper aims to assess starch-lignin materials' production and characterization technologies, highlighting their physicochemical properties, outcomes, challenges, and opportunities. First, this paper describes the current status, sources, and chemical modifications of lignin and starch. Next, the discussion is oriented toward starch-lignin materials and their production approaches, such as blends, composites, plasticized/crosslinked films, and coupled polymers. Special attention is given to the characterization methods of starch-lignin materials, focusing on their advantages, disadvantages, and expected outcomes. Finally, the challenges, opportunities, and future perspectives in developing starch-lignin materials, such as adhesives, coatings, films, and controlled delivery systems, are discussed.
Collapse
Affiliation(s)
- Jonathan A Diaz-Baca
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada.
| |
Collapse
|
3
|
Ohnuma M, Ito K, Hamada K, Takeuchi A, Asano K, Noda T, Watanabe A, Hokura A, Teramura H, Takahashi F, Mutsuro-Aoki H, Tamura K, Shimada H. Peculiar properties of tuber starch in a potato mutant lacking the α-glucan water dikinase 1 gene GWD1 created by targeted mutagenesis using the CRISPR/dMac3-Cas9 system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:219-227. [PMID: 38420564 PMCID: PMC10901162 DOI: 10.5511/plantbiotechnology.23.0823a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/23/2023] [Indexed: 03/02/2024]
Abstract
Glucose chains in starch are phosphorylated and contribute to structural stabilization. Phosphate groups contained in starch also play a role in retaining moisture. α-Glucan water dikinase 1 (GWD1) is involved in the phosphorylation of glucose chains in starch. In this study, we generated potato mutants of the GWD1 gene using the CRISPR/dMac3-Cas9 system. Observation of the phenotypes of the GWD1-deficient mutants revealed their physiological roles in tuber starch formation. The 4-allele mutants showed growth retardation and a delay in tuber formation. A significant decrease in phosphorus content was detected in the tuber starch of the gwd1 mutant. This mutant starch showed a higher amylose content than the wild-type starch, whereas its gelatinization temperature was slightly lower than that of the WT starch. The peak viscosity of the mutant starch was lower than that of the WT starch. These observations revealed that the starch of the gwd1 mutants had peculiar and unique properties compared to those of WT, sbe3 and gbss1 mutant starches. The amount of tissue-released water due to freeze-thawing treatment was determined on tubers of the gwd1 mutant and compared with those of WT and the other mutants. Significantly less water loss was found in the gwd1, sbe3 and gbss1 mutant tubers than in the WT tubers. Our results indicate that the GWD1 gene is not only important for potato growth, but also largely effective for the traits of tuber starch.
Collapse
Affiliation(s)
- Mariko Ohnuma
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Kosuke Ito
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Karin Hamada
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Ami Takeuchi
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Kenji Asano
- Division of Large-Scale Upland Farming Research, Field Crop Breeding Group, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Kasai, Hokkaido 082-0081, Japan
| | - Takahiro Noda
- Division of Large-Scale Upland Farming Research, Field Crop Breeding Group, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Kasai, Hokkaido 082-0081, Japan
| | - Akira Watanabe
- Department of Applied Chemistry, Tokyo Denki University, Adachi, Tokyo 120-8551, Japan
| | - Akiko Hokura
- Department of Applied Chemistry, Tokyo Denki University, Adachi, Tokyo 120-8551, Japan
| | - Hiroshi Teramura
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Fuminori Takahashi
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Hiromi Mutsuro-Aoki
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| |
Collapse
|
4
|
Chen C, Li G, Zhu F. A novel starch from lotus (Nelumbo nucifera) seeds: Composition, structure, properties and modifications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
|
6
|
Xu Y, Ding J, Gong S, Li M, Yang T, Zhang J. Physicochemical properties of potato starch fermented by amylolytic Lactobacillus plantarum. Int J Biol Macromol 2020; 158:656-661. [PMID: 32387358 DOI: 10.1016/j.ijbiomac.2020.04.245] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/22/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
This study investigated the effect of fermentation by Lactobacillus plantarum CGMCC 14177 strain on physicochemical properties and morphological characteristics of potato starch. The maximum total amylase and α-amylase production of L. plantarum CGMCC 14177 were 286.8 and 208.1 U/g, respectively. Fermented granules clearly exhibited pocked and dimpled surfaces. The granule properties changed to have a 1.9% increase in relative crystallinity. Overall the starch changed to have slight increases in onset and peak temperature, but resulted decreases of conclusion temperature and enthalpy. Fermentation decreased peak viscosity and breakdown value, while increased trough viscosity, final viscosity, and setback. Further analysis showed that fermentation increased the gel hardness and chewiness of the potato starch, but made little differences in the springiness, cohesiveness and resilience. Collectively, these results provide insight on how Lactobacillus strains can be used to modify the physicochemical properties of potato starch in ways that extend its use in industrial applications.
Collapse
Affiliation(s)
- Yihan Xu
- School of Agriculture and Biology, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jingyu Ding
- College of Food Science and Technology, Shanghai Ocean University, 999 Huchenhuan Road, Shanghai 201306, China
| | - Shengxiang Gong
- School of Agriculture and Biology, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meng Li
- School of Agriculture and Biology, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Wilmar Oleo Co., Ltd., 118 Gaodong Road, Shanghai 200137, China
| | - Tiankui Yang
- Wilmar Oleo Co., Ltd., 118 Gaodong Road, Shanghai 200137, China
| | - Jianhua Zhang
- School of Agriculture and Biology, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|