1
|
El-Marasy SA, Farouk H, Khattab MS, Moustafa PE. Beta-carotene ameliorates diabetic nephropathy in rats: involvement of AMPK/SIRT1/autophagy pathway. Immunopharmacol Immunotoxicol 2024; 46:763-772. [PMID: 39308310 DOI: 10.1080/08923973.2024.2402347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/03/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVE This study aimed to demonstrate the protective effect of beta-carotene against STZ-induced DN in rats and explore the possible underlying mechanisms that may have mediated such condition. MATERIAL AND METHODS Wistar rats were allocated into four groups. Normal group received distilled water for 3 weeks. The other three groups were rendered diabetic by an intraperitoneal dose of STZ (50 mg/kg), 48 h later, group 2: received the vehicle and served as control, groups (3 &4) received orally beta-carotene in doses of 10 and 20 mg/kg, respectively for 3 weeks. Then serum and renal tissue were collected for biochemical, molecular, immunohistopathological, and histopathological examination. RESULTS Beta-carotene ameliorated the reduction in body weight, reduced blood glucose, elevated serum insulin, reduced blood urea nitrogen, and serum creatinine levels. Beta-carotene elevated phosphorylated 5' adenosine monophosphate-activated protein kinase (p-AMPK)/AMPK, alleviated phosphorylated mammalian target of rapamycin (p-mTOR)/mTOR, reduced interleukin 1 beta (IL-1β), increased Beclin 1, LC3II/LC3I, and reduced p62 renal contents. Moreover, it elevated renal SIRT1 gene expression and reduced renal tumor necrosis factor-alpha (TNF-α) and caspase-3 protein expressions. CONCLUSION Beta-carotene exerted renoprotective effect against STZ-induced DN and histopathological alterations through alleviating hyperglycemia, attenuating inflammation, activating AMPK/SIRT1/autophagy pathway, and combating apoptosis.
Collapse
Affiliation(s)
- Salma A El-Marasy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hadir Farouk
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Passant E Moustafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Korese JK, Achaglinkame MA. Convective drying of Gardenia erubescens fruits: Effect of pretreatment, slice thickness and drying air temperature on drying kinetics and product quality. Heliyon 2024; 10:e25968. [PMID: 38375284 PMCID: PMC10875444 DOI: 10.1016/j.heliyon.2024.e25968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Gardenia erubescens fruits are regarded as nutrient-dense, capable of promoting nutritional and metabolic human health. However, they are seasonal and highly perishable which limits their consumption and wider utilization. In this study, the effect of slice thickness (3 mm and 5 mm), pretreatments (steam blanching and dipping in ascorbic acid solution) and drying air temperature (40 °C, 50 °C, 60 °C and 70 °C) on drying kinetics, color, β-carotene and vitamin C content of Gardenia erubescens fruits were investigated. The results showed that the drying time increased as slice thickness increased, and decreased as drying air temperature increased but did not follow any trend for pretreatment. The Page model (R2 values of 0.9998-0.9999) exhibited the best fit to the drying kinetics data. The diffusivity values (5.31 × 10-11 to 4.14 × 10-10 m2s-1) increased as the slice thickness and drying air temperature increased but had no linear trends with pretreatment. The activation energy ranged from 14.35 to 44.78 kJmol-1, with the highest being recorded by 5 mm untreated samples and the lowest by the 3 mm blanched samples. The total color change (ΔE*) of the samples generally decreased as the drying air temperature increased but increased as the slice thickness increased. The ascorbic acid pretreated samples had the least color change, followed by the untreated samples while the blanched samples had the highest change. Overall, the 5 mm ascorbic acid pretreated samples dried at 70 °C had the least color change (13.33 ± 0.52). The blanching and dipping in ascorbic acid solution generally yielded lower β-carotene and vitamin C values as compared to the untreated samples. The 3 mm ascorbic acid pretreated samples dried at 50 °C recorded the lowest β-carotene (42.70 ± 3.21 μg/100 g) while the 5 mm ascorbic acid pretreated samples had the lowest vitamin C (37.50 ± 2.65 mg/100 g) at 70 °C. Pretreatments and drying air temperatures showed mixed effects on the drying characteristics, color, β-carotene and vitamin C contents of fruit slices. The findings, therefore, indicate that a compromise may have to be made on the aforementioned processing conditions in order to meet the desired attributes of one's interest.
Collapse
Affiliation(s)
- Joseph Kudadam Korese
- Faculty of Agriculture, Food and Consumer Sciences, Department of Agricultural Mechanisation and Irrigation Technology, University for Development Studies, P. O. Box TL 1882, Nyankpala Campus, Tamale, Ghana
| | - Matthew Atongbiik Achaglinkame
- Faculty of Agriculture, Food and Consumer Sciences, Department of Agricultural Mechanisation and Irrigation Technology, University for Development Studies, P. O. Box TL 1882, Nyankpala Campus, Tamale, Ghana
| |
Collapse
|
3
|
Kim HB, Go EJ, Baek JS. Effect of hot-melt extruded Morus alba leaves on intestinal microflora and epithelial cells. Heliyon 2024; 10:e23954. [PMID: 38332870 PMCID: PMC10851307 DOI: 10.1016/j.heliyon.2023.e23954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Although rutin and isoquercitrin have many effects, they are insoluble substances, making it difficult to obtain pure substances. This study was to investigate whether Morus alba leaves containing rutin and isoquercitrin could improve intestinal health by making a sustained-release formulation through a hot-melt extrusion (HME) process with improved stability and solubility and determine whether it could upregulate the balance of intestinal microorganisms and intestinal epithelial cells. A sustained-release formulation was prepared by the HME process using Morus alba leaves and a hydrophilic polymer matrix. Antibacterial activities of pathogenic microorganisms (Escherichia coli, Streptococcus aureus, Enterococcus faecalis) and proliferative effect of probiotics (Lactobacillus rhamnosus, Pediococcus pentosaceus) were tested against intestinal microorganisms. Regarding intestinal epithelial cells, a co-culture model of Caco-2 cells and RAW 264.7 cells was used. It was confirmed that the extrudate exhibited high antibacterial activities against pathogenic microorganisms and affected the proliferation of probiotics. Furthermore, after inducing inflammation through LPS, it recovered transepithelial electrical resistance-increased levels of tight junction proteins and decreased expression levels of pro-inflammatory cytokines. HME of Morus alba leaves containing rutin and isoquercitrin can upregulate intestinal microbial balance and intestinal epithelial cells.
Collapse
Affiliation(s)
- Hyun Bok Kim
- National Institute of Agricultural Sciences, RDA, Wanju 55365, South Korea
| | - Eun Ji Go
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, South Korea
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, South Korea
- Department of Bio-Functional Materials, Kangwon National University, Samcheok 25949. South Korea
- BeNatureBioLab, Chuncheon 24206, South Korea
| |
Collapse
|
4
|
Liu WY, Hsieh YS, Ko HH, Wu YT. Formulation Approaches to Crystalline Status Modification for Carotenoids: Impacts on Dissolution, Stability, Bioavailability, and Bioactivities. Pharmaceutics 2023; 15:pharmaceutics15020485. [PMID: 36839810 PMCID: PMC9965060 DOI: 10.3390/pharmaceutics15020485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Carotenoids, including carotenes and xanthophylls, have been identified as bioactive ingredients in foods and are considered to possess health-promoting effects. From a biopharmaceutical perspective, several physicochemical characteristics, such as scanty water solubility, restricted dissolution, and susceptibility to oxidation may influence their oral bioavailability and eventually, their effectiveness. In this review, we have summarized various formulation approaches that deal with the modification of crystalline status for carotenoids, which may improve their physicochemical properties, oral absorption, and biological effects. The mechanisms involving crystalline alteration and the typical methods for examining crystalline states in the pharmaceutical field have been included, and representative formulation approaches are introduced to unriddle the mechanisms and effects more clearly.
Collapse
Affiliation(s)
- Wan-Yi Liu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yun-Shan Hsieh
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Horng-Huey Ko
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (H.-H.K.); (Y.-T.W.); Tel.: +886-7-3121101 (ext. 2643) (H.-H.K.); +886-7-3121101 (ext. 2254) (Y.-T.W.)
| | - Yu-Tse Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (H.-H.K.); (Y.-T.W.); Tel.: +886-7-3121101 (ext. 2643) (H.-H.K.); +886-7-3121101 (ext. 2254) (Y.-T.W.)
| |
Collapse
|
5
|
Song D, Xie C, Yang R, Ma A, Zhao H, Zou F, Zhang X, Zhao X. An application of citric acid as a carrier for solid dispersion to improve the dissolution and uric acid-lowering effect of kaempferol. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2023. [DOI: 10.1515/ijfe-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Kaempferol (KPF) is a flavonoid compound, which has a variety of pharmacological activities, and widely exists in daily diet. However, its application is limited due to poor solubility. Citric acid (CA) is a common food additive with high solubility. In this study, solid dispersion (SD) was prepared with CA as the carrier to improve the solubility of KPF. KPF-CA-SD (weight ratio 1:20) was obtained by ultrasonic for 20 min at 40 °C. The in vitro dissolution of KPF in SD was increased from about 50% to more than 80%. The physicochemical characterizations were analyzed by X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscope. In hyperuricemia mice, KPF-SD (equivalent to 100 mg/kg KPF) can effectively reduce serum uric acid and exert nephroprotective effects. In conclusion, the preparation of SD with CA might provide a safe and effective selection to facilitate application of KPF in food and medicine.
Collapse
Affiliation(s)
- Danni Song
- School of Traditional Chinese Material Medica , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Changqing Xie
- Faculty of Functional Food and Wine , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Rong Yang
- Faculty of Functional Food and Wine , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Aijinxiu Ma
- Faculty of Functional Food and Wine , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Honghui Zhao
- Faculty of Functional Food and Wine , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Fengmao Zou
- School of Traditional Chinese Material Medica , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Xiangrong Zhang
- Faculty of Functional Food and Wine , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Xu Zhao
- Faculty of Functional Food and Wine , Shenyang Pharmaceutical University , Shenyang 110016 , China
| |
Collapse
|
6
|
Chhem-Kieth S, Holm Rasmussen L, Rosenfjeld M, Larsen Andersen M. Effects of vegetables and fruit with varying physical damage, fungal infection, and soil contamination on stability of aqueous ozone. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Enggi CK, Mahardika F, Devara DM, Saputra MD, Wafiah N, Raihan M, Permana AD. HPLC-UV method validation for quantification of β-carotene in the development of sustained release supplement formulation containing solid dispersion-floating gel in situ. J Pharm Biomed Anal 2022; 221:115041. [PMID: 36152490 DOI: 10.1016/j.jpba.2022.115041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 10/31/2022]
Abstract
Despite the health benefits of β-carotene, its activity has been hampered by poor aqueous solubility and low oral bioavailability. Therefore, it is crucial to develop a new approach to overcome these problems. In this study, we developed a dry powder supplement comprising a combination approach of solid dispersion and floating gel in situ of β-carotene to enhance the solubility and achieve sustained release behavior. Here, we validated an HPLC method to quantify β-carotene as per the guidelines from ICH. The analytical method was validated in methanol and Fasted-State Simulated Gastric Fluid (FaSSGF) to determine β-carotene in recovery and in vitro release studies, respectively. A simple HPLC method using Xselect CSH™ C18 column (Waters, 3.0 × 150 mm) with the particle size of 3.5 µm was validated with 100% acetonitrile as the mobile phase. The calibration curves were found to be linear with LLOQ values < 3 ng/mL. Importantly, the method was accurate and precise without a carry over effect and successfully applied to determine the β-carotene concentration in the content analysis of the compound and in vitro drug release from floating gel in situ laden with solid dispersion formulations. The sensitivity of the method obtained here offers a wide potential use in various applications in drug delivery systems.
Collapse
Affiliation(s)
| | - Fitrah Mahardika
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | - Nurfadilla Wafiah
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Muhammad Raihan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
8
|
Proximate, Elemental, and Functional Properties of Novel Solid Dispersions of Moringa oleifera Leaf Powder. Molecules 2022; 27:molecules27154935. [PMID: 35956885 PMCID: PMC9370398 DOI: 10.3390/molecules27154935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Moringa oleifera leaf powder (MOLP) is a rich source of antioxidants, protein, minerals, vitamins, and various phytochemicals and has been used to combat malnutrition in many countries. However, despite its many benefits, MOLP has low a solubility in water, necessitating the development of ways to address this issue. To improve the solubility of MOLP, solid-dispersed Moringa oleifera leaf powders (SDMOLPs) have been developed through freeze-drying, melting, microwave irradiation, and solvent evaporation methods using polyethylene glycols (PEG4000 and PEG6000) (1:1) as hydrophilic carriers. The solid dispersions were evaluated for their proximate composition using standard analytical procedures. Elemental composition was characterized using scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). Water absorption capacity (WAC) and water-solubility were further evaluated as functional properties. Proximate composition revealed that MOLP and SDMOLPs were rich in protein, energy, carbohydrate, ash, and fat contents. MOLP solid dispersions are a major source of minerals (Ca, Mg, Cu, and Zn), and can be used to alleviate many mineral deficiencies. All solid dispersions had significantly higher (p < 0.05) solubilities (ranging from 54 to 64%) and WAC (ranging from 468.86 to 686.37%), relative to that of pure MOLP. The increased solubility of SDMOLPs may be attributed to the hydrogen bonds and intermolecular interactions between MOLP and the hydrophilic carriers. The results indicate that the solid dispersion technique can be successfully employed to improve the solubility of MOLP. And the solid-dispersed MOLPs with enhanced functional properties may be useful as functional ingredients in foods and beverages, dietary supplements, or nutraceutical formulations.
Collapse
|
9
|
Ishimoto K, Shimada Y, Ohno A, Otani S, Ago Y, Maeda S, Lin B, Nunomura K, Hino N, Suzuki M, Nakagawa S. Physicochemical and Biochemical Evaluation of Amorphous Solid Dispersion of Naringenin Prepared Using Hot-Melt Extrusion. Front Nutr 2022; 9:850103. [PMID: 35571922 PMCID: PMC9093646 DOI: 10.3389/fnut.2022.850103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Naringenin (NRG) is a plant-derived flavonoid. Due to its antioxidant, anti-inflammatory, and analgesic activities it is beneficial to human health and is often used as a functional food ingredient; however, it has poor water solubility and low in vivo bioavailability. Therefore, the efficacy of NRG can be improved by enhancing its water solubility to increase gastrointestinal absorption. Conventional methods for the formulation of NRG are very complex and use toxic organic solvents, making them impractical for the production of functional foods. The objective of this study was to develop a safe and effective NRG-based functional food material. Previously, we established a technology to prepare amorphous solid dispersions (SDs) from functional food ingredients with poor water solubility and used hot-melt extrusion technology that is comparatively simple and does not involve the use of organic solvents. In this study, we prepared NRG SD and evaluated them both physicochemically and biochemically. NRG SD had superior water solubility and gastrointestinal absorption relative to native NRG and showed higher analgesic efficacy in rats than crystalline NRG. NRG SD was administered to mice in a mixed diet for 28 days, and organ weights and hematological/clinical biochemical parameters were assessed. NRG SD did not demonstrate severe adverse effects. The results suggest that NRG SD is a safe and highly efficacious formulation that can be used as a functional food material in the future.
Collapse
Affiliation(s)
- Kenji Ishimoto
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yukiko Shimada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akane Ohno
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shuichi Otani
- Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Mitsui Norin Co., Ltd., R&D Group, Shizuoka, Japan
| | - Yukio Ago
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Soya Maeda
- Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Mitsui Norin Co., Ltd., R&D Group, Shizuoka, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Nobumasa Hino
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masayuki Suzuki
- Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Mitsui Norin Co., Ltd., R&D Group, Shizuoka, Japan
| | - Shinsaku Nakagawa
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Majumdar S, Mandal T, Dasgupta Mandal D. Comparative performance evaluation of chitosan based polymeric microspheres and nanoparticles as delivery system for bacterial β-carotene derived from Planococcus sp. TRC1. Int J Biol Macromol 2022; 195:384-397. [PMID: 34863970 DOI: 10.1016/j.ijbiomac.2021.11.167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
β-carotene is a natural compound with immense healthcare benefits. To overcome insolubility and lack of stability which restricts its application, in this study, β-carotene from Planococcus sp. TRC1 was entrapped into formulations of chitosan‑sodium alginate microspheres (MF1, MF2 and MF3) and chitosan nanoparticles (NF1, NF2 and NF3). The maximum entrapment efficiency (%) and loading capacity (%) were 80.6 ± 4.28 and 26 ± 3.05 (MF2) and 92.1 ± 3.44 and 41.86 ± 4.65 (NF2) respectively. Korsmeyer-Peppas model showed best fit with release, revealing non-Fickian diffusion. Thermal and UV treatment exhibited higher activation energy (kJ/mol), 17.76 and 15.57 (MF2) and 37.03 and 19.33 (NF2) compared to free β-carotene (3.7 and 3.9), uncovering enhanced stability. MF2 and NF2 revealed swelling index (%) 721 ± 1.7 and 18.1 ± 1.5 (pH 6.8) and particle size 69.5 ± 3.2 μm and 92 ± 2.5 nm respectively. FESEM, FT-IR, XRD and DSC depicted spherical morphology, intactness of functional groups and masking of crystallinity. The IC50 (μg ml-1) values for antioxidant and anticancer (A-549) activities were 33.1 ± 1.7, 45.1 ± 2.8, 39.3 ± 2.9 and 31.3 ± 1.7, 27.9 ± 2.4, 25.3 ± 2.2 for β-carotene, MF2 and NF2 respectively with no significant cytotoxicity on HEK-293 cells and RBCs (p > 0.05). This comparative study of microspheres and nanoparticles may allow the diverse applications of an unconventional bacterial β-carotene with promising stability and efficacies.
Collapse
Affiliation(s)
- Subhasree Majumdar
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India; Department of Zoology, Sonamukhi College, Sonamukhi, Bankura 722207, West Bengal, India
| | - Tamal Mandal
- Department of Chemical Engineering, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
| | - Dalia Dasgupta Mandal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.
| |
Collapse
|
11
|
Ishimoto K, Nakamura Y, Otani S, Miki S, Maeda S, Iwamoto T, Konishi Y, Ago Y, Nakagawa S. Examination of dissolution ratio of β-carotene in water for practical application of β-carotene amorphous solid dispersion. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:114-122. [PMID: 35068557 PMCID: PMC8758807 DOI: 10.1007/s13197-021-04991-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 01/03/2023]
Abstract
β-Carotene (BC) has an antioxidant effect that removes active oxygen in vivo and can reduce the risk of developing various diseases, but it is almost insoluble in water. Therefore, to develop highly effective BC functional food products, it is essential to increase its water solubility, which in turn can improve its absolute bioavailability. Recently, a BC amorphous solid dispersion (BC-SD) prepared using hot melt extruder technology had increased water solubility and improved absorption from the gastrointestinal tract. However, only a part of the BC in BC-SD could be dissolved in water. In this study, we evaluated whether the dissolution ratio of BC in water could be improved by examining the mixing ratio of BC and base materials in BC-SD. Results showed that by reducing the mixing ratio of BC to the base materials, the dissolution ratio of BC in water increased. It was also found that when BC-SD, which has the highest dissolution ratio, was intragastrically administered to rats, its absolute bioavailability was most increased. These results are useful findings that may help in reducing the costs associated with the BC-SD manufacturing process and will be an important part of our strategy for practical use in the future.
Collapse
Affiliation(s)
- Kenji Ishimoto
- grid.136593.b0000 0004 0373 3971Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Global Center for Medical Engineering and Informatic, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yuta Nakamura
- grid.136593.b0000 0004 0373 3971Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Shuichi Otani
- grid.136593.b0000 0004 0373 3971Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan ,Mitsui Norin Co. Ltd., R&D Group, 223-1 Miyabara, Fujieda, Shizuoka 426-0133 Japan
| | - Shohei Miki
- grid.136593.b0000 0004 0373 3971Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Soya Maeda
- grid.136593.b0000 0004 0373 3971Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan ,Mitsui Norin Co. Ltd., R&D Group, 223-1 Miyabara, Fujieda, Shizuoka 426-0133 Japan
| | - Taiki Iwamoto
- grid.136593.b0000 0004 0373 3971Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yuma Konishi
- grid.136593.b0000 0004 0373 3971Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yukio Ago
- grid.136593.b0000 0004 0373 3971Global Center for Medical Engineering and Informatic, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan ,Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hirohisma University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Shinsaku Nakagawa
- grid.136593.b0000 0004 0373 3971Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Global Center for Medical Engineering and Informatic, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
12
|
Characterization of Novel Solid Dispersions of Moringa oleifera Leaf Powder Using Thermo-Analytical Techniques. Processes (Basel) 2021. [DOI: 10.3390/pr9122230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Moringa oleifera leaf powder (MOLP) has been identified as the most important functional ingredient owing to its rich nutritional profile and healthy effects. The solubility and functional properties of this ingredient can be enhanced through solid dispersion technology. This study aimed to investigate the effects of polyethylene glycols (PEGs) 4000 and 6000 as hydrophilic carriers and solid dispersion techniques (freeze-drying, melting, solvent evaporation, and microwave irradiation) on the crystallinity and thermal stability of solid-dispersed Moringa oleifera leaf powders (SDMOLPs). SDMOLPs were dully characterized using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). The PXRD results revealed that the solid dispersions were partially amorphous with strong diffraction peaks at 2θ values of 19° and 23°. The calorimetric and thermogravimetric curves showed that PEGs conferred greater stability on the dispersions. The FTIR studyrevealed the existence of strong intermolecular hydrogen bond interactions between MOLP and PEG functional groups. MOLP solid dispersions may be useful in functional foods and beverages and nutraceutical formulations.
Collapse
|
13
|
Naringenin nanocrystals for improving anti-rheumatoid arthritis activity. Asian J Pharm Sci 2021; 16:816-825. [PMID: 35027956 PMCID: PMC8740402 DOI: 10.1016/j.ajps.2021.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Naringenin (NAR) is recognized for its anti-inflammatory activity. However, the clinical application of NAR is limited by low bioavailability, which is attributed to its poor aqueous solubility. In this study, we aimed to improve the therapeutic efficacy of NAR by formulating it into nanocrystals (NCs) via wet milling. The obtained NARNCs exhibited superior dissolution behaviors, increased cellular uptake, and enhanced transcellular diffusion relative to those of bulk NAR. Oral administration of NARNCs also significantly improved bioavailability in rats. In addition, the NARNCs effectively improved rheumatoid arthritis treatment in collagen-induced arthritic rats by reducing inflammatory cell infiltration and synovial damage. These results indicate that NARNCs provides a promising strategy for rheumatoid arthritis treatment.
Collapse
|
14
|
Carvalho ASD, Rezende SCD, Caleja C, Pereira E, Barros L, Fernandes I, Manrique YA, Gonçalves OH, Ferreira IC, Barreiro MF. β-Carotene colouring systems based on solid lipid particles produced by hot melt dispersion. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Otani S, Miki S, Nakamura Y, Ishimoto K, Ago Y, Nakagawa S. Improved Bioavailability of β-Carotene by Amorphous Solid Dispersion Technology in Rats. J Nutr Sci Vitaminol (Tokyo) 2021; 66:207-210. [PMID: 32350183 DOI: 10.3177/jnsv.66.207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
β-Carotene (BC) is a natural lipophilic carotenoid mainly present in vegetables and fruits. Although it has various beneficial pharmacological activities, its bioavailability is low owing to its low water solubility. Recently, we reported that BC solid dispersion prepared using hot-melt technology with polyvinylpyrrolidone and sucrose fatty acid esters was in an amorphous state and showed the highest solubility. We hypothesized that the absorption of BC solid dispersion would be better because of its increased water solubility. To verify this, we conducted a pharmacokinetic analysis of BC for application in functional foods. Crystalline or amorphous BC was orally administered to rats. Blood was collected at various time points, and the BC concentration in the plasma was measured by HPLC. Oral administration of amorphous BC showed increased absorption in rats compared with that of BC crystals. Using blood samples from rats that were intravenously injected with the plasma of rats that had been orally administered BC, pharmacokinetic parameters could be calculated without using organic solvents or surfactants. It was possible to calculate various pharmacokinetic parameters under physiological conditions according to amorphous BC characteristics. Thus, we were able to determine the bioavailability of BC after oral administration. This simple technology to improve BC solubility without the use of organic solvents can be applied not only in the pharmaceutical industry but also in the food industry, and it therefore has high utility value.
Collapse
Affiliation(s)
- Shuichi Otani
- Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University.,R&D Group, Mitsui Norin Co. Ltd
| | - Shohei Miki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yuta Nakamura
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Kenji Ishimoto
- Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University.,Global Center for Medical Engineering and Informatic, Osaka University
| | - Yukio Ago
- Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University.,Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University.,Global Center for Medical Engineering and Informatic, Osaka University
| | - Shinsaku Nakagawa
- Laboratory of Innovative Food Science, Graduate School of Pharmaceutical Sciences, Osaka University.,Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University.,Global Center for Medical Engineering and Informatic, Osaka University
| |
Collapse
|
16
|
Alshehri S, Imam SS, Hussain A, Altamimi MA, Alruwaili NK, Alotaibi F, Alanazi A, Shakeel F. Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: newer formulation techniques, current marketed scenario and patents. Drug Deliv 2020; 27:1625-1643. [PMID: 33207947 PMCID: PMC7737680 DOI: 10.1080/10717544.2020.1846638] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/29/2022] Open
Abstract
In the last few decades, solid dispersion (SD) technology had been studied as an approach to produce an amorphous carrier to enhance the solubility, dissolution rate, and bioavailability of poorly water-soluble drugs. The use of suitable carrier and methodology in the preparation of SDs play a significant role in the biological behavior of the SDs. SDs have been prepared using a variety of pharmaceutically acceptable polymers utilizing various novel technologies. In the recent years, much attention has been paid toward the use of novel carriers and methodologies in exploring novel types of SDs to enhance therapeutic efficacy and bioavailability. The use of novel carriers and methodologies would be very beneficial for formulation scientists to develop some SDs-based formulations for their commercial use and clinical applications. In the present review, current literature of novel methodologies for SD preparation to enhance the dissolution rate, solubility, therapeutic efficacy, and bioavailability of poorly water-soluble drugs has been summarized and analyzed. Further, the current status of SDs, patent status, and future prospects have also been discussed.
Collapse
Affiliation(s)
- Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Fahad Alotaibi
- General Directorate Health Affairs, Ministry of Health, Riyadh, Saudi Arabia
| | - Abdullah Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Tomar D, Singh PK, Hoque S, Modani S, Sriram A, Kumar R, Madan J, Khatri D, Dua K. Amorphous systems for delivery of nutraceuticals: challenges opportunities. Crit Rev Food Sci Nutr 2020; 62:1204-1221. [PMID: 33103462 DOI: 10.1080/10408398.2020.1836607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amorphous solid products have recently gained a lot of attention as key solutions to improve the solubility and bioavailability of poorly soluble nutraceuticals. A pure amorphous drug is a high-energy form; physically/chemically unstable and so easily gets recrystallized into the less soluble crystalline form limiting solubility and bioavailability issues. Amorphous solid dispersion and co-amorphous are new formulation approach that stabilized unstable amorphous form through different mechanisms such as preventing mobility, high glass transition temperature and molecular interaction. Nutraceuticals have been received the utmost importance due to their health benefits. However, most of these compounds have been associated with poor oral bioavailability due to poor solubility, high lipophilicity, high melting point, poor permeability, degradability and rapid metabolism in the gastrointestinal tract (GIT) which limits its health benefits. This review provides us a systematic application of amorphous systems to the delivery of poorly soluble nutraceuticals, with the aim of overcoming their pharmacokinetic limitations and improved pharmacological potential. In particular, it describes the challenges associated with delivery of oral nutraceuticals, various methods involved in the preparation and characterization of amorphous systems and permeability enhancement of nutraceuticals are in detail.
Collapse
Affiliation(s)
- Devendrasingh Tomar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pankaj K Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sajidul Hoque
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sheela Modani
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anitha Sriram
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health (GSH), The University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
18
|
Koklesova L, Liskova A, Samec M, Buhrmann C, Samuel SM, Varghese E, Ashrafizadeh M, Najafi M, Shakibaei M, Büsselberg D, Giordano FA, Golubnitschaja O, Kubatka P. Carotenoids in Cancer Apoptosis-The Road from Bench to Bedside and Back. Cancers (Basel) 2020; 12:E2425. [PMID: 32859058 PMCID: PMC7563597 DOI: 10.3390/cancers12092425] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022] Open
Abstract
An incidence and mortality of cancer are rapidly growing worldwide, especially due to heterogeneous character of the disease that is associated with irreversible impairment of cellular homeostasis and function. Targeting apoptosis, one of cancer hallmarks, represents a potent cancer treatment strategy. Carotenoids are phytochemicals represented by carotenes, xanthophylls, and derived compounds such as apocarotenoids that demonstrate a broad spectrum of anti-cancer effects involving pro-apoptotic signaling through extrinsic and intrinsic pathways. As demonstrated in preclinical oncology research, the apoptotic modulation is performed at post-genomic levels. Further, carotenoids demonstrate additive/synergistic action in combination with conventional oncostatic agents. In addition, a sensitization of tumor cells to anti-cancer conventional treatment can be achieved by carotenoids. The disadvantage of anti-cancer application of carotenoids is associated with their low solubility and, therefore, poor bioavailability. However, this deficiency can be improved by using nanotechnological approaches, solid dispersions, microemulsions or biofortification that significantly increase the anti-cancer and pro-apoptotic efficacy of carotenoids. Only limited number of studies dealing with apoptotic potential of carotenoids has been published in clinical sphere. Pro-apoptotic effects of carotenoids should be beneficial for individuals at high risk of cancer development. The article considers the utility of carotenoids in the framework of 3P medicine.
Collapse
Affiliation(s)
- Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.)
| | - Constanze Buhrmann
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (C.B.); (M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, 51368 Tabriz, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, 67146 Kermanshah, Iran;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (C.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (S.M.S.); (E.V.); (D.B.)
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|