1
|
Nishimura K, Abe T. Effect of protease reaction conditions on volatile compounds generated in Maillard reaction products from soy protein hydrolysates. Food Chem 2025; 464:141599. [PMID: 39413596 DOI: 10.1016/j.foodchem.2024.141599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Maillard reaction products (MRPs) produced by heating protease-catalyzed soy protein hydrolysates (SPHs) with cysteine and ribose can generate meat-like flavors. However, the impact of protease reaction conditions on the volatile compound composition of MRPs has not been thoroughly investigated. In this study, seven SPHs were prepared using two proteases, flavourzyme and trypsin, over reaction times of 10, 120, and 1440 min. The volatile compound compositions, including sulfur-containing compounds, aldehydes, pyrazines, and furans, of the seven SPHs and the corresponding seven MRPs varied according to the protease reaction conditions and the Maillard reaction. Differences in pH, free amino acid composition, and peptide composition were responsible for these variations. Notably, soy-derived peptides containing unique cysteine sequences, such as PGCPST, DETICT, ECQIQK, and HCQR, were significantly reduced during the Maillard reaction, suggesting that these sequences may serve as precursors to volatile compounds.
Collapse
Affiliation(s)
- Kosaku Nishimura
- Toyo Institute of Food Technology, 23-2, 4-Chome, Minami-Hanayashiki, Kawanishi City, Hyogo Prefecture 666-0026, Japan.
| | - Tatsuya Abe
- Toyo Institute of Food Technology, 23-2, 4-Chome, Minami-Hanayashiki, Kawanishi City, Hyogo Prefecture 666-0026, Japan.
| |
Collapse
|
2
|
Haq M, Ali MS, Park JS, Kim JW, Zhang W, Chun BS. Atlantic salmon (Salmo salar) waste as a unique source of biofunctional protein hydrolysates: Emerging productions, promising applications, and challenges mitigation. Food Chem 2025; 462:141017. [PMID: 39216379 DOI: 10.1016/j.foodchem.2024.141017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The Atlantic salmon is an extremely popular fish for its nutritional value and unique taste among several fish species. Researchers are focusing on the utilization of Atlantic salmon waste for generating protein hydrolysates rich in peptides and amino acids and investigating their health benefits. Several technological approaches, including enzymatic, chemical, and the recently developed subcritical water hydrolysis, are currently used for the production of Atlantic salmon waste protein hydrolysates. Hydrolyzing various wastes, e.g., heads, bones, skin, viscera, and trimmings, possessing antioxidant, blood pressure regulatory, antidiabetic, and anti-inflammatory properties, resulting in applications in human foods and nutraceuticals, animal farming, pharmaceuticals, cell culture, and cosmetics industries. Furthermore, future applications, constraints several challenges associated with industrial hydrolysate production, including sensory, safety, and economic constraints, which could be overcome by suggested techno processing measures. Further studies are recommended for developing large-scale, commercially viable production methods, focusing on eradicating sensory constraints and facilitating large-scale application.
Collapse
Affiliation(s)
- Monjurul Haq
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sadek Ali
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Jang-Woo Kim
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Wei Y, Liu B, Zhang H, Yan K. Isolation and identification of bitter peptides during sequential hydrolysis of wheat gluten by enzyme preparations with endo-and exo-activities. Food Chem 2024; 460:140491. [PMID: 39047483 DOI: 10.1016/j.foodchem.2024.140491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/14/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The effect of the released amount and bitterness threshold of bitter peptides on the sensory properties of different wheat gluten hydrolysates (WGHs) after hydrolysis was investigated. The results showed that the endo-activity of the enzyme promoted the release of bitter peptides, leading to enhanced bitterness intensity in WGHs. With the increase in degree of hydrolysis (DH), the bitter threshold of bitter peptides became the main reason affecting bitterness of the WGHs. Proteax exerted the strong exo-activity at the DH of 20%, which could reduce bitterness of Pro-16 hydrolysates. The reason for debittering was the reduction in the content with molecular weights (MWs) of 500-1000 Da and the decrease of surface hydrophobicity (SH) in the Pro-20 M hydrolysates, which led to the increase of the bitterness threshold of bitter peptide. Meanwhile, HPLC-MS/MS analysis demonstrated the reduced proportion of C-terminal hydrophobic amino acids (HAAs) in Pro-20 M extracts verifying the cause of debittering.
Collapse
Affiliation(s)
- Yunjin Wei
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Boye Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, People's Republic of China; Food Laboratory of Zhongyuan, Luohe 462300, Henan Province, People's Republic of China.
| | - Hanxiao Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Kebing Yan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, People's Republic of China
| |
Collapse
|
4
|
Chen J, Wei C, Hou J, Wang J, Ruan Q. Debittering and antioxidant improvement of soy protein hydrolysates using curcumin as hydrophobic core. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39535324 DOI: 10.1002/jsfa.14023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Protein hydrolysates possess various bioactive functions (e.g. antioxidant), but their bitter taste is unacceptable to most consumers. In the present study, a novel approach for debittering was introduced, which involved the utilization of a hydrophobic compound, curcumin (Cur). Soy protein hydrolysates (SPH), prepared through alcalase hydrolysis, served as the research model for this investigation. RESULTS It was found that bitter intensity of SPH was dominated by the hydrophobic amino acid residues, and the addition of Cur could remarkably reduce bitterness. The debittering mechanism is attributed to the direct binding of Cur to the exposed hydrophobic amino acid residues of SPH via hydrophobic interaction, thereby shielding the hydrophobic bitter groups and hindering their interaction with the bitter taste receptors. Moreover, this debittering strategy leads to the generation of stable nanoparticles with a Cur-core/SPH-shell architecture, which can significantly improve the antioxidant capacity of SPH compared to those using biomacromolecules for encapsulation. CONCLUSION Using curcumin as a hydrophobic core is a facile and feasible strategy with bifunction of debittering as well as improving bioactive effect of SPH, which may extend its application in foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiafeng Chen
- Dining and Tourism Academy, Guangdong Polytechnic of Science and Trade, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Cuilan Wei
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Junjie Hou
- Wuzhou Bingquan Industrial Shareholding Co., Ltd, Guangxi, China
| | - Jinmei Wang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Qijun Ruan
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Efficacy Component Testing and Risk Substance Rapid Screening of Health Food, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou, China
| |
Collapse
|
5
|
Honrado A, Miguel M, Ardila P, Beltrán JA, Calanche JB. From Waste to Value: Fish Protein Hydrolysates as a Technological and Functional Ingredient in Human Nutrition. Foods 2024; 13:3120. [PMID: 39410155 PMCID: PMC11482619 DOI: 10.3390/foods13193120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Fish provides a low-caloric content, polyunsaturated fatty acids, many essential trace elements and is also a rich source of protein, ranging from 10% to 25%. Therefore, the production of FPH (fish protein hydrolysates) is of great interest, as the resulting products exhibit a variety of important bioactive and technological properties, making them potential ingredients for new functional foods and supplements. The aim of this review was to compile and analyze information on enzymatic hydrolysates, with particular emphasis on those derived from fish by-products, as a potential ingredient in human nutrition. Their nutritional characteristics, food safety aspects, bioactive properties, technological attributes, key influencing factors, and applications in food products were evaluated. The findings revealed that these properties are influenced by several factors, such as the raw material, enzymes used, degree of hydrolysis, and the molecular weight of the peptides, which need to be considered as a whole. In conclusion, the gathered information suggests that it is possible to obtain high-value products through enzymatic hydrolysis, even when using fish by-products. However, although numerous studies focused on FPH derived from fish muscle, research on by-products remains limited. Further investigation is needed to determine whether the behavior of FPH from by-products differs from that of muscle-derived FPH.
Collapse
Affiliation(s)
| | | | | | | | - Juan B. Calanche
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Miguel Servet 177, 50013 Zaragoza, Spain; (A.H.); (P.A.); (J.A.B.)
| |
Collapse
|
6
|
Xiang Q, Xia Y, Fang S, Zhong F. Enzymatic debittering of cheese flavoring and bitterness characterization of peptide mixture using sensory and peptidomics approach. Food Chem 2024; 440:138229. [PMID: 38159315 DOI: 10.1016/j.foodchem.2023.138229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Peptides in cheese flavoring produced through proteolysis plus fermentation generated bitterness. Bitterness of individual peptide can be quantified using quantitative structure-activity relationship, where molecular mass (M), hydrophobicity, residues, C-terminal hydrophobic amino acids (C-HAAs), and N-terminal basic ones (N-BAAs) are crucial. However, their accumulative influence on the overall bitterness of peptide mixture remains unknown. This study delved into extensive proteolysis to debitter and to correlate the multi-influencing factors of peptides and the collective bitterness. As hydrolysis increased from 7.5 % to 28.0 %, bitterness reduced from 5.0 to 0.3-2.7 scores, contingent on proteases used, in which FU was optimal. The overall bitterness cannot be predicted through the summation of individual peptide bitterness, which depended on M (0.5-3 kDa) and 5-23 residues, followed by N-BAAs and C-HAAs. Analysis of enzymatic cleavage sites and substrate characteristics revealed, to more effectively debitter bovine milk protein hydrolysates, proteases specifically cleaving Pro, Leu, Phe, and Val were desired.
Collapse
Affiliation(s)
- Qin Xiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory for Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yixun Xia
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Jiaxing Institute of Future Food, Jiaxing 314015, China
| | - Sicong Fang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Fang Zhong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory for Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
7
|
Zhou Y, Zhang Y, Hong H, Luo Y, Li B, Tan Y. Mastering the art of taming: Reducing bitterness in fish by-products derived peptides. Food Res Int 2023; 173:113241. [PMID: 37803554 DOI: 10.1016/j.foodres.2023.113241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/08/2023]
Abstract
Processed fish by-products are valuable sources of peptides due to their high protein content. However, the bitterness of these peptides can limit their use. This review outlines the most recent advancements and information regarding the reduction of bitterness in fish by-products derived peptides. The sources and factors influencing bitterness, the transduction mechanisms involved, and strategies for reducing bitterness are highlighted. Bitterness in peptides is mainly influenced by the source, preparation method, presence of hydrophobic amino acid groups, binding to bitter receptors, and amino acid sequence. The most widely utilized techniques for eliminating bitterness or enhancing taste include the Maillard reaction, encapsulation, seperating undesirable components, and bitter-blockers. Finally, a summary of the current challenges and future prospects in the domain of fish by-products derived peptides is given. Despite some limitations, such as residual bitterness and limited industrial application, there is a need for further research to reduce the bitterness of fish by-products derived peptides. To achieve this goal, future studies should focus on the technology of fish by-products derived peptide bitterness diminishment, with the aim of producing high-quality products that meet consumer expectations.
Collapse
Affiliation(s)
- Yongjie Zhou
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Zhang
- Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA
| | - Hui Hong
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
8
|
Zhao X, Cai B, Chen H, Wan P, Chen D, Ye Z, Duan A, Chen X, Sun H, Pan J. Tuna trimmings (Thunnas albacares) hydrolysate alleviates immune stress and intestinal mucosal injury during chemotherapy on mice and identification of potentially active peptides. Curr Res Food Sci 2023; 7:100547. [PMID: 37522134 PMCID: PMC10371818 DOI: 10.1016/j.crfs.2023.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
In this study, Tuna trimmings (Thunnas albacares) protein hydrolysate (TPA) was produced by alcalase. The anti-tumor synergistic effect and intestinal mucosa protective effect of TPA on S180 tumor-bearing mice treated with 5-fluorouracil (5-FU) chemotherapy were investigated. The results showed that TPA can enhance the anti-tumor effect of 5-FU chemotherapy, as evident by a significant reduction in tumor volume observed in the medium and high dose TPA+5-FU groups compared to the 5-FU group (p < 0.001). Moreover, TPA significantly elevated the content of total protein and albumin in all TPA dose groups (p < 0.01, p < 0.001), indicating its ability to regulate the nutritional status of the mice. Furthermore, histopathological studies revealed a significant increase in the height of small intestinal villi, crypt depth, mucosal thickness, and villi area in the TPA+5-FU groups compared to the 5-FU group (p < 0.05), suggesting that TPA has a protective effect on the intestinal mucosa. Amino acid analysis revealed that TPA had a total amino acid content of 66.30 g/100 g, with essential amino acids accounting for 30.36 g/100 g. Peptide molecular weight distribution analysis of TPA indicated that peptides ranging from 0.25 to 1 kDa constituted 64.54%. LC-MS/MS analysis identified 109 peptide sequences, which were predicted to possess anti-cancer and anti-inflammatory activities through database prediction. Therefore, TPA has the potential to enhance the antitumor effects of 5-FU, mitigate immune depression and intestinal mucosal damage induced by 5-FU. Thus, TPA could be serve as an adjuvant nutritional support for malnourished patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Xiangtan Zhao
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Bingna Cai
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou, 511458, China
| | - Hua Chen
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou, 511458, China
| | - Peng Wan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou, 511458, China
| | - Deke Chen
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou, 511458, China
| | - Ziqing Ye
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Ailing Duan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| | - Xin Chen
- Foshan University, School of Environment and Chemical Engineering, Foshan, 528000, China
| | - Huili Sun
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Jianyu Pan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou, 511458, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, China
| |
Collapse
|
9
|
Mirzapour-Kouhdasht A, McClements DJ, Taghizadeh MS, Niazi A, Garcia-Vaquero M. Strategies for oral delivery of bioactive peptides with focus on debittering and masking. NPJ Sci Food 2023; 7:22. [PMID: 37231034 DOI: 10.1038/s41538-023-00198-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Protein hydrolysis is a process used in the food industry to generate bioactive peptides of low molecular weight and with additional health benefits, such as antihypertensive, antidiabetic, and antioxidant properties that are often associated with their content on hydrophobic amino acids. This results in an increased bitterness of the products, making them less desirable for their use in food formulations. This review summarizes the main dietary sources of bitter bioactive peptides, including methods to determine their bitterness, such as the Q-values and electronic tongue; and the main factors and mechanisms underlying the bitterness of these compounds. The main strategies currently used to improve the taste and oral delivery of bioactive peptides are also discussed together with the main advantages and drawbacks of each technique. Debittering and masking techniques are reported in detail, including active carbon treatments, alcohol extraction, isoelectric precipitation, chromatographic methods, and additional hydrolytic processes. Other masking or blocking techniques, including the use of inhibitors, such as modified starch, taurine, glycine, and polyphosphates, as well as chemical modifications, such as amination, deamination, acetylation, or cross-linking were also discussed. The findings of this work highlight encapsulation as a highly effective method for masking the bitter taste and promoting the bioactivity of peptides compared to other traditional debittering and masking processes. In conclusion, the article suggests that advanced encapsulation technologies can serve as an effective means to mitigate the bitterness associated with bioactive peptides, while simultaneously preserving their biological activity, increasing their viability in the development of functional foods and pharmaceuticals.
Collapse
Affiliation(s)
| | | | | | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Dublin, 4, Ireland.
| |
Collapse
|
10
|
Ramakrishnan SR, Jeong CR, Park JW, Cho SS, Kim SJ. A review on the processing of functional proteins or peptides derived from fish by-products and their industrial applications. Heliyon 2023; 9:e14188. [PMID: 36938382 PMCID: PMC10015205 DOI: 10.1016/j.heliyon.2023.e14188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
To understand the production and characteristics of protein hydrolysates pertaining to individual fish species, we selected and analyzed the most important commercial fish species according to the market value based on the Statistics on International Exports of Fishery Commodities by Food and Agriculture Organization. Accordingly, salmon, shrimp, cod, tuna, squid, and herring are marine species with high global value. Peptides obtained from their by-products were predominant in hydrophobic amino acids such as alanine, phenylalanine, methionine, proline, valine, tyrosine, tryptophan, leucine, and isoleucine. Bioactive peptides are short with a length of 2-20 amino acids. They remain inactive when they are within their parent proteins. Low molecular weight (0.3-8 kDa) peptides from hydrolyzed protein are easily digestible, readily absorbed by the body and are water-soluble. The hydrophobic nature contributes to their bioactivity, which facilitates their interactions with the membrane lipid bilayers. Incomplete hydrolysis results in low yields of hydrophobic amino acids. The glycosylation type of the resulting peptide fragment determines the different applications of the hydrolysate. The degree of conservation of the glycosidic residues and the size of the peptides are influenced by the method used to generate these hydrolysates. Therefore, it is crucial to explore inexpensive novel methodologies to generate bioactive peptides. According to the current studies, a unified approach (in silico estimation coupled with peptidomics) can be used for the identification of novel peptides with diverse physiological and technological functions. From an industrial perspective, the reusability of immobilized enzymes and membrane separation techniques (e.g., ultrafiltration) on marine by-products can offer low operating costs and higher yield for large-scale production of bioactive peptides. This review summarizes the production processes and essential characteristics of protein hydrolysates from fish by-products and presents the advances in their application.
Collapse
Affiliation(s)
- Sudha Rani Ramakrishnan
- Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chae-Rim Jeong
- Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jin-Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan-gun 58554, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
11
|
The potential meat flavoring generated from Maillard reaction products of wheat gluten protein hydrolysates-xylose: Impacts of different thermal treatment temperatures on flavor. Food Res Int 2023; 165:112512. [PMID: 36869515 DOI: 10.1016/j.foodres.2023.112512] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Wheat gluten protein hydrolysates were prepared by Flavourzyme, followed by xylose-induced Maillard reaction at different temperatures (80 °C, 100 °C and 120 °C). The MRPs were subjected to analysis of physicochemical characteristics, taste profile and volatile compounds. The results demonstrated that UV absorption and fluorescence intensity of MRPs significantly increased at 120 °C, suggesting formation of a large amount of Maillard reaction intermediates. Thermal degradation and cross-linking simultaneously occurred during Maillard reaction, while thermal degradation of MRPs played a more predominant role at 120 °C. MRPs exhibited high umami and low bitter taste at 120 °C, accompanied by the high content of umami amino acids and low content of bitter amino acids. Furans and furanthiols with pronounced meaty flavor served as the main volatile compounds in MRPs at 120 °C. Overall, high temperature-induced Maillard reaction of wheat gluten protein hydrolysates and xylose is a promising strategy for the generation of potential plant-based meat flavoring.
Collapse
|
12
|
Kim Y, Kim MJ, Oh WY, Lee J. Antioxidant effects and reaction volatiles from heated mixture of soy protein hydrolysates and coconut oil. Food Sci Biotechnol 2023; 32:309-317. [PMID: 36778091 PMCID: PMC9905523 DOI: 10.1007/s10068-022-01189-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Soy protein hydrolysates (SPHs) are prepared from soybean meal using commercially available protease enzymes and acid/alkali treatment. The antioxidant properties of SPHs were evaluated by measuring headspace oxygen consumption and conjugated diene formation in oil-in-water (O/W) emulsions. In addition, volatile profiles were analyzed for the heated mixture of SPHs and the coconut oil (SPHCO). Total amino acid content was the highest in double proteases. SPHs prepared from enzymes acted as better antioxidants than those prepared from acid/alkali treatments in O/W emulsions. SPHs prepared from double proteases generated the highest amounts of total volatiles and nitrogen-containing compounds in SPHCO. 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, 2-methyl-butanal, benzeneacetaldehyde, and 2,6-dimethylpyrazine were the major volatiles in SPHCO. Enzymatic SPHs act as natural antioxidants in the O/W emulsion matrix, and thermal reaction products from SPHCO may contribute to the production of a unique volatile flavor in plant protein-based foods. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01189-7.
Collapse
Affiliation(s)
- YoonHa Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do Republic of Korea
| | - Mi-Ja Kim
- Department of Food and Nutrition, Kangwon National University, Samcheok, Republic of Korea
| | - Won Young Oh
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do Republic of Korea
| |
Collapse
|
13
|
Lee GY, Jung MJ, Nam JW, Han AR, Kim BM, Jun JY. Preparation and Taste Profiling of the Enzymatic Protein Hydrolysate from a by-Product of Red Snow Crab Processing as a Natural Seasoning Compound. Foods 2022; 11:foods11233911. [PMID: 36496720 PMCID: PMC9741261 DOI: 10.3390/foods11233911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
The red snow crab (Chionoecetes japonicus) is the most industrially processed in the Republic of Korea, and the meat is very popular, owing to its savory taste and flavor. Its body meat production comprises a two-step separation to increase meat yield. However, during the secondary separation, broken shell debris is occasionally entrained in the meat products, which is a concern for manufacturers. As the residues from first separation contain 39.9% protein, it can be utilized as an enzymatic protein hydrolysate (FPH) rich in free amino acids (FAAs). A combination of flavourzyme and alcalase (1:1) superiorly hydrolyzed the protein of the residues, and the best hydrolysis condition was suggested at 60 °C for 15 h with fourfold water and 2% enzyme addition, achieving a 57.4% degree of hydrolysis. The EPH was mostly composed of FAAs containing most essential amino acids; however, bitter-tasting amino acids accounted for 46.4% of the FAAs. To reduce the bitter taste, different nonvolatile organic acids were considered as masking agents, and citric and malic acids were effective, though the umami taste is slightly decreased. In conclusion, the crab processing residues can be utilized as an FAA-based natural seasoning compound through enzymatic hydrolysis and organic acid treatment.
Collapse
Affiliation(s)
- Ga-Yang Lee
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Min-Jeong Jung
- Food Convergence Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jong-Woong Nam
- Food Convergence Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Ah-Ram Han
- Food Convergence Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Byoung-Mok Kim
- Food Convergence Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Joon-Young Jun
- Food Convergence Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Correspondence: ; Tel.: +82-33-643-8043
| |
Collapse
|
14
|
Nikoo M, Benjakul S, Ahmadi Gavlighi H. Protein hydrolysates derived from aquaculture and marine byproducts through autolytic hydrolysis. Compr Rev Food Sci Food Saf 2022; 21:4872-4899. [PMID: 36321667 DOI: 10.1111/1541-4337.13060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
Abstract
Autolysis technology has shown potential for protein hydrolysates production from marine and aquaculture byproducts. Viscera are a source of cheap proteolytic enzymes for producing protein hydrolysates from the whole fish or processing byproducts of the most valuable commercial species by applying autolysis technology. The use of autolysis allows economical production of protein hydrolysate and provides an opportunity to valorize downstream fish and shellfish processing byproducts at a lower cost. As a result, production and application of marine byproduct autolysates is increasing in the global protein hydrolysates market. Nevertheless, several restrictions occur with autolysis, including lipid and protein oxidation mediated by the heterogeneous composition of byproducts. The generally poor storage and handling of byproducts may increase the formation of undesirable metabolites during autolysis, which can be harmful. The formation of nitrogenous compounds (i.e., biogenic amines), loss of freshness, and process of autolysis in the byproducts could increase the rate of quality and safety loss and lead to more significant concern about the use of autolysates for human food applications. The current review focuses on the autolysis process, which is applied for the hydrolysis of aquaculture and marine discards to obtain peptides as functional or nutritive ingredients. It further addresses the latest findings on the mechanisms and factors contributing the deterioration of byproducts and possible ways to control oxidation and other food quality and safety issues in raw materials and protein hydrolysates.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, West Azerbaijan, Iran
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hassan Ahmadi Gavlighi
- Faculty of Agriculture, Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Zhang H, Huang X, Zhang Y, Zou X, Tian L, Hong H, Luo Y, Tan Y. Silver carp (Hypophthalmichthys molitrix) by-product hydrolysates: A new nitrogen source for Bifidobacterium animalis ssp. lactis BB-12. Food Chem 2022; 404:134630. [DOI: 10.1016/j.foodchem.2022.134630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
|
16
|
Hasani K, Ariaii P, Ahmadi M. Antimicrobial, antioxidant and anti-cancer properties of protein hydrolysates from indian mackerel (Rastrelliger kanagurta) waste prepared using commercial enzyme. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10396-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Xia Y, Zhu L, Wu G, Liu T, Li X, Wang X, Zhang H. Comparative study of various methods used for bitterness reduction from pea (Pisum sativum L.) protein hydrolysates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Shahosseini SR, Javadian SR, Safari R. Effects of Molecular Weights -Assisted Enzymatic Hydrolysis on Antioxidant and Anticancer Activities of Liza abu Muscle Protein Hydrolysates. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10371-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Zhang X, Dai Z, Zhang Y, Dong Y, Hu X. Structural characteristics and stability of salmon skin protein hydrolysates obtained with different proteases. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Setthaya P, Jaturasitha S, Ketnawa S, Chaiyaso T, Sato K, Wongpoomchai R. Influence of Commercial Protease and Drying Process on Antioxidant and Physicochemical Properties of Chicken Breast Protein Hydrolysates. Foods 2021; 10:2994. [PMID: 34945544 PMCID: PMC8700794 DOI: 10.3390/foods10122994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Different proteases can be applied to produce certain bioactive peptides. This study focused on the effects of some commercial proteases and drying processes on the physical, chemical, and biological properties of chicken breast hydrolysates (CBH). Chicken breast hydrolyzed with Alcalase® presented a higher degree of hydrolysis (DH) than papain. Moreover, the treatment with Alcalase®, followed by papain (A-P), was more proficient in producing antioxidant activities than a single enzyme treatment. Conditions comprising 0.63% Alcalase® (w/w) at pH 8.0 and 52.5 °C for 3 h, followed by 0.13% papain (w/w) at pH 6.0 and 37 °C for 3 h, resulted in the highest yields of DH and peptide contents. The spray-dried microencapsulated powder improved the physicochemical properties including moisture content, color measurement, solubility, and particle morphology. In summary, the dual enzyme application involving the hydrolysis of Alcalase® and papain, coupled with the spray-drying process, could be used to produced antioxidant CBH.
Collapse
Affiliation(s)
- Phatthawin Setthaya
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (S.K.)
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sanchai Jaturasitha
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sunantha Ketnawa
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (S.K.)
| | - Thanongsak Chaiyaso
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Kenji Sato
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (S.K.)
| |
Collapse
|
21
|
Ying X, Agyei D, Udenigwe C, Adhikari B, Wang B. Manufacturing of Plant-Based Bioactive Peptides Using Enzymatic Methods to Meet Health and Sustainability Targets of the Sustainable Development Goals. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.769028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Due to the rapid growth in the global population, the consumption of animal-based food products/food compounds has been associated with negative implications for food sustainability/security. As a result, there is an increasing demand for the development of plant-based food and compounds as alternatives. Meanwhile, a growing number of studies report the health benefits of food protein-based peptides prepared via enzymatic hydrolysis and exhibiting biological properties such as antioxidant, antihypertensive, anti-thrombotic, and antidiabetic activities. However, the inherent bitterness of some peptides hinders their application in food products as ingredients. This article aims to provide the latest findings on plant-based bioactive peptides, particularly their health benefits, manufacturing methods, detection and qualification of their bitterness properties, as well as debittering methods to reduce or eliminate this negative sensory characteristic. However, there is still a paucity of research on the biological property of debittered peptides. Therefore, the role of plant protein-derived bioactive peptides to meet the health targets of the Sustainable Development Goals can only be realised if advances are made in the industrial-scale bioprocessing and debittering of these peptides.
Collapse
|
22
|
Nirmal NP, Santivarangkna C, Benjakul S, Maqsood S. Fish protein hydrolysates as a health-promoting ingredient-recent update. Nutr Rev 2021; 80:1013-1026. [PMID: 34498087 DOI: 10.1093/nutrit/nuab065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dietary habits and lifestyle-related diseases indicate that food has a direct impact on individual health. Hence, a diet containing essential nutrients is important for healthy living. Fish and fish products are important in diets worldwide because of their nutritional value, especially their easily digestible proteins with essential amino acids. Similarly, fish protein hydrolysate (FPH) obtained from fish muscle and by-products has been reported to exhibit various biological activities and to have functional properties, which make FPH a suitable nutraceutical candidate. This review focuses on the health-promoting ability of FPH in terms of skin health, bone and cartilage health, blood lipid profile, and body-weight management studied in rats and human model systems. The absorption and bioavailability of FPH in humans is discussed, and challenges and obstacles of FPH as a functional food ingredient are outlined.
Collapse
Affiliation(s)
- Nilesh P Nirmal
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chalat Santivarangkna
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Soottawat Benjakul
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sajid Maqsood
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
23
|
Extraction of Pb(II) from wheat samples via dual-frequency ultrasound-assisted enzymatic digestion and the mechanisms of its interactions with wheat proteins. Food Chem 2021; 363:130247. [PMID: 34116494 DOI: 10.1016/j.foodchem.2021.130247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023]
Abstract
A novel dual-frequency ultrasound-assisted enzymatic digestion (DUED) technique was used to extract Pb(II) from certified reference materials (CRMs) of wheat flour. Following this, the interactions of Pb(II) with wheat proteins were investigated to provide evidence for the selection of enzyme species. The results showed that the simultaneous use of α-amylase and flavourzyme resulted in the recovery of 97.9% of Pb(II) in 6 min under a 40 kHz ultrasonic bath combined with a 20 kHz ultrasonic probe. The exopeptidase activity of the flavourzyme was found to be the main contributor to the extraction of Pb(II) from the CRMs. Additionally, the proposed method exhibited a low detection limit (8.2 ng/g) and high recoveries of real samples (93.4%-112.2%) with RSD less than 7.33%. Furthermore, the oxygen-containing groups of wheat proteins, the nitrogen-containing groups of albumins and globulins, and the sulfur-containing groups of gliadins and glutenins were found to offer coordination sites for Pb(II).
Collapse
|
24
|
Varedesara MS, Ariaii P, Hesari J. The effect of grape seed protein hydrolysate on the properties of stirred yogurt and viability of Lactobacillus casei in it. Food Sci Nutr 2021; 9:2180-2190. [PMID: 33841834 PMCID: PMC8020923 DOI: 10.1002/fsn3.2188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 11/07/2022] Open
Abstract
In this study, the effect of grape seed protein hydrolysate (GPH) on the physicochemical and sensory properties of stirred yogurt was evaluated. At first, the antioxidant properties and degree of hydrolysis (DH) of GPH were determined using the microbial protease enzymes (alcalase and flavourzyme), the results showed that alcalase enzyme can produce GPH with higher DH and antioxidant properties (p < .05). Also, increasing the hydrolysis time had a positive effect on these properties (p < .05). The DH, free radical scavenging DPPH, and ferric reducing power for GPH by alcalase at 30 min was 21.51%, 88.68%, and 0.33 μmol ferrous/ g, respectively. Therefore, this treatment was used for further experiments. In the next part, the mentioned GPH was added to the stirred yogurt with three concentrations (0.5, 1.5, and 1.5%) and physicochemical properties and viability of Lactobacillus casei and sensory properties were measured during 15 days of storage. The results showed that the GPH treatment had higher pH, viscosity, and texture firmness and less acidity and syneresis compared with the control sample (p < .05). Also, in these samples, the decreasing trend of L. casei viability was slower than the control treatment during the storage period (p < .05). In most parameters, better results were observed with increasing the concentration GPH and all the treatments were acceptable in terms of sensory properties. Therefore, by producing yogurt containing GPH, a new functional food can be provided for consumers of dairy products, which in addition to the desired taste, good nutritional properties can be also achieved from its consumption.
Collapse
Affiliation(s)
| | - Peiman Ariaii
- Department of Food Science & TechnologyAyatolla Amoli BranchIslamic Azad UniversityAmolIran
| | - Javad Hesari
- Department of Food and TechnologyCollege of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
25
|
Pa’ee KF, Razali N, Sarbini SR, Ramonaran Nair SN, Yong Tau Len K, Abd-Talib N. The production of collagen type I hydrolyzate derived from tilapia (Oreochromis sp.) skin using thermoase PC10F and its in silico analysis. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2020.1869040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Khairul Faizal Pa’ee
- Department of Food, Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Engineering Technology, Alor Gajah, Melaka, Malaysia
| | - Nadia Razali
- Department of Food, Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Engineering Technology, Alor Gajah, Melaka, Malaysia
| | - Shahrul R. Sarbini
- Department of Crop Science, Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia, Bintulu, Sarawak, Malaysia
| | - Suganya Nair Ramonaran Nair
- Department of Food, Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Engineering Technology, Alor Gajah, Melaka, Malaysia
| | - Kelly Yong Tau Len
- Department of Food, Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Engineering Technology, Alor Gajah, Melaka, Malaysia
| | - Norfahana Abd-Talib
- Department of Food, Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Engineering Technology, Alor Gajah, Melaka, Malaysia
| |
Collapse
|
26
|
Singh A, Benjakul S, Huda N. Characteristics and nutritional value of biscuits fortified with debittered salmon (
Salmo salar
) frame hydrolysate. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Avtar Singh
- Department of Food Technology Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Soottawat Benjakul
- Department of Food Technology Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Nurul Huda
- Faculty of Food Science and Nutrition Universiti Malaysia Sabah Jalan UMS Kota Kinabalu Sabah 88400 Malaysia
| |
Collapse
|
27
|
Vázquez JA, Durán AI, Menduíña A, Nogueira M. Biotechnological Valorization of Food Marine Wastes: Microbial Productions on Peptones Obtained from Aquaculture By-Products. Biomolecules 2020; 10:biom10081184. [PMID: 32823975 PMCID: PMC7465676 DOI: 10.3390/biom10081184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 01/29/2023] Open
Abstract
Based on a biotechnological strategy, in the present work several peptones are produced from the Alcalase hydrolysis (0.1-0.2% v/w, 56-64 °C, pH 8.27-8.98, 3 h) and thermal processing (105 °C, 60 min) of wastes generated from the industrial processing of turbot, salmon, trout, seabream and seabass. These peptones were included (in the range of 2.6-11 g/L of soluble protein) as main source of organic nitrogen (protein substrates) in low-cost media for the culture of lactic acid bacteria (LAB), marine probiotic bacteria (MPB) and ubiquitous Gram+ bacteria. In most cases, batch fermentations conducted in aquaculture peptone media led to the best growth, metabolic productions and yields. Nevertheless, no significant differences between aquaculture peptones and commercial media were generally observed. Kinetic parameters from a logistic equation and used for cultures modeling were applied with the purpose of comparing the bioproduction outcomes. In economical terms, the validity of the aquaculture peptones as substitutives of the peptones (meat extract, casitone, etc.) from commercial media was also compared. The decreasing of the costs for LAB bioproductions ranged between 3-4 times and the growth costs of MPB and Gram+ bacteria were improved more than 70 and 15 times, respectively, in relation to those found in control commercial media.
Collapse
|
28
|
Pimentel FB, Cermeño M, Kleekayai T, Harnedy-Rothwell PA, Fernandes E, Alves RC, Oliveira MBP, FitzGerald RJ. Enzymatic Modification of Porphyra dioica-Derived Proteins to Improve their Antioxidant Potential. Molecules 2020; 25:E2838. [PMID: 32575491 PMCID: PMC7355851 DOI: 10.3390/molecules25122838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/30/2022] Open
Abstract
Enzymatic hydrolysis has been employed to modify protein functional properties and discover new sources of antioxidants. In this study, the effect of different enzymatic treatments on antioxidant activity of Porphyra dioica (blades and protein isolate (PI)) was investigated. Protein nitrogen content of P. dioica blades and PI were 23 and 50% (dry weight), respectively. Blades and PI were hydrolyzed with Prolyve® and Prolyve® plus Flavourzyme®. Peptide profiles and molecular mass distribution of the hydrolysates were investigated. The hydrolysis promoted generation of peptides and low molecular mass components <1 kDa. Antioxidant activity was assessed using ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH·) scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS·+) inhibition, and reactive oxygen species scavenging ability, i.e., oxygen radical absorbance capacity (ORAC) and hypochlorous acid (HOCl) scavenging assays. In general, enzymatic hydrolysis of P. dioica blades and PI enhanced the in vitro antioxidant activity. Direct hydrolysis of blades improved ORAC values up to 5-fold (from 610 to 3054 μmol Trolox eq./g freeze dried sample (FDS). The simultaneous release of phenolic compounds suggested a potential synergistic activity (ORAC and ABTS·+ assays). Such hydrolysates may be of value as functional food ingredients.
Collapse
Affiliation(s)
- Filipa B. Pimentel
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Maria Cermeño
- Proteins and Peptides Research Group, Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.C.); (T.K.); (P.A.H.-R.); (R.J.F.)
| | - Thanyaporn Kleekayai
- Proteins and Peptides Research Group, Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.C.); (T.K.); (P.A.H.-R.); (R.J.F.)
| | - Pádraigín A. Harnedy-Rothwell
- Proteins and Peptides Research Group, Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.C.); (T.K.); (P.A.H.-R.); (R.J.F.)
| | - Eduarda Fernandes
- REQUIMTE/LAQV, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - M. Beatriz P.P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Richard J. FitzGerald
- Proteins and Peptides Research Group, Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.C.); (T.K.); (P.A.H.-R.); (R.J.F.)
| |
Collapse
|
29
|
Effect of Alkaline Treatment on Characteristics of Bio-Calcium and Hydroxyapatite Powders Derived from Salmon Bone. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alkaline treatment has been extensively implemented in the extraction process of hydroxyapatite (HAp) extraction from various kinds of bio-materials, such as animal bone and scales. The main purpose of such treatment is to remove proteinaceous substances from raw materials. The influence of the alkaline treatment that could alter not only the organic contents but also chemical composition—specifically the Ca/P mole ratios of bio-calcium, HAp, and the biphasic apatite powders derived from salmon bone, a by-product from the salmon industry—was investigated. Both HAp and biphasic apatite powders were obtained from the calcination of bio-calcium powders with and without alkaline treatment, respectively. An X-ray diffraction analysis confirmed the presence of hydroxyapatite and β-tricalcium phosphate (β-TCP) in the calcined bone powder without alkaline treatment while only a single phase of hydroxyapatite was observed in the alkaline-treated sample. Calcium and phosphorus contents were measured by an inductively coupled plasma optical emission spectrometer (ICP-OES). A variation of Ca/P ratios was observed among all samples, depending on the chemical and heat treatment conditions. Organic molecules, such as protein, fat, hydroxyproline, and TBARS, were significantly lowered in bio-calcium powders with the alkaline treatment. This work represents important research on chemical treatment prior to the raw material conversion process, which significantly influences chemical and phase compositions of the bio-calcium and hydroxyapatite powder derived from salmon bone waste.
Collapse
|
30
|
Idowu AT, Igiehon OO, Idowu S, Olatunde OO, Benjakul S. Bioactivity Potentials and General Applications of Fish Protein Hydrolysates. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10071-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Idowu AT, Benjakul S. Bitterness of fish protein hydrolysate and its debittering prospects. J Food Biochem 2019; 43:e12978. [PMID: 31489658 DOI: 10.1111/jfbc.12978] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022]
Abstract
Fish processing by-products often generated as discard can enzymatically be processed into a product known as fish protein hydrolysates (FPH). FPH is a good source of amino acid and peptides with bioactivities. FPH can be added to foods to improve nutritive values and bioactivities. However, bitterness in FPH, associated with hydrophobicity, degree of hydrolysis, molecular weight, proline residues, type of enzymes, and amino acid sequences has limited its uses in foods. Thus, FPH is used in foods at low levels. Numerous procedures such as extraction with alcohol, activated carbon treatment, Maillard reaction, cyclodextrin, chromatographic separation, and enzymatic hydrolysis with exopeptidase and plastein reaction have been explored to remove the bitterness of FPH. These methods can lower bitterness and improve its taste. However, changes in structure and loss of some peptides may occur. FPH with less or no bitterness can therefore be used at higher levels to alleviate nutrition deficiencies in foods. PRACTICAL APPLICATIONS: Fish protein hydrolysate (FPH) is a nutritive ingredient, which can be produced from fish processing by-products. However, bitterness in FPH has limited its potential use as a nutritive ingredient. As a result, it is incorporated into foods at low levels. Nevertheless, application of several reported debittering processes could assist to solve the problem of bitterness in FPH. The debittering can improve sensory property of FPH, thus widening its utilization.
Collapse
Affiliation(s)
- Anthony Temitope Idowu
- Faculty of Agro-Industry, Department of Food Technology, Prince of Songkla University, Songkhla, Thailand
| | - Soottawat Benjakul
- Faculty of Agro-Industry, Department of Food Technology, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|