1
|
Abdalla G, Mussagy CU, Sant'Ana Pegorin Brasil G, Scontri M, da Silva Sasaki JC, Su Y, Bebber C, Rocha RR, de Sousa Abreu AP, Goncalves RP, Burd BS, Pacheco MF, Romeira KM, Picheli FP, Guerra NB, Farhadi N, Floriano JF, Forster S, He S, Nguyen HT, Peirsman A, Tirpáková Z, Huang S, Dokmeci MR, Ferreira ES, Dos Santos LS, Piazza RD, Marques RFC, Goméz A, Jucaud V, Li B, de Azeredo HMC, Herculano RD. Eco-sustainable coatings based on chitosan, pectin, and lemon essential oil nanoemulsion and their effect on strawberry preservation. Int J Biol Macromol 2023; 249:126016. [PMID: 37516224 DOI: 10.1016/j.ijbiomac.2023.126016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Films and coatings manufactured with bio-based renewable materials, such as biopolymers and essential oils, could be a sustainable and eco-friendly alternative for protecting and preserving agricultural products. In this work, we developed films and coatings from pectin and chitosan to protect strawberries (Fragaria x ananassa Duch.) from spoilage and microbial contamination. We developed three coatings containing equal amounts of glycerol and Sicilian lemon essential oil (LEO) nanoemulsion. We identified seventeen chemicals from LEO by GC-MS chromatogram, including d-limonene, α-Pinene, β-Pinene, and γ-Terpinene. The pectin and chitosan coatings were further characterized using different physicochemical, mechanical, and biological methods. The films demonstrated satisfactory results in strength and elongation at the perforation as fruit packaging. In addition, the coatings did not influence the weight and firmness of the strawberry pulps. We observed that 100 % essential oil was released in 1440 min resulting from the erosion process. Also, the oil preserved the chemical stability of the films. Antioxidant activity (AA), measured by Electron Paramagnetic Resonance (EPR), showed that the coatings loaded with 2 % LEO nanoemulsion (PC + oil) showed that almost 50 % of AA from LEO nanoemulsion was preserved. The chitosan and the pectin-chitosan coatings (PC + oil) inhibited filamentous fungi and yeast contaminations in strawberries for at least 14 days, showing a relationship between the AA and antimicrobial results.
Collapse
Affiliation(s)
- Gabriela Abdalla
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile.
| | - Giovana Sant'Ana Pegorin Brasil
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Postgraduate Program in Biomaterials and Bioprocess Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Mateus Scontri
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Josana Carla da Silva Sasaki
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Postgraduate Program in Biomaterials and Bioprocess Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Yanjin Su
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Camila Bebber
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Raildis Ribeiro Rocha
- Postgraduate Program in Biomaterials and Bioprocess Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Ana Paula de Sousa Abreu
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Rogerio Penna Goncalves
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Postgraduate Program in Biomaterials and Bioprocess Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Betina Sayeg Burd
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Mariana Ferraz Pacheco
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Karoline Mansano Romeira
- Postgraduate Program in Biomaterials and Bioprocess Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Flavio Pereira Picheli
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | | | - Neda Farhadi
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Juliana Ferreira Floriano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; School of Science, São Paulo State University (UNESP), Bauru, SP, Brazil
| | - Samuel Forster
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Siqi He
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Plastic, Reconstructive and Aesthetic Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Zuzana Tirpáková
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
| | - Shuyi Huang
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Ernando Silva Ferreira
- State University of Feira de Santana (UEFS), Department of Physics, s/n Transnordestina Highway, 44036-900 Feira de Santana, BA, Brazil
| | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, Universidade de São Paulo University (USP), 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Rodolfo Debone Piazza
- Laboratory of Magnetic Materials and Colloids, Department of Analytical Chemistry, Physical Chemistry and Inorganic, Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, SP, Brazil
| | - Rodrigo Fernando Costa Marques
- Laboratory of Magnetic Materials and Colloids, Department of Analytical Chemistry, Physical Chemistry and Inorganic, Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, SP, Brazil; Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil and Derivatives - CEMPEQC, São Paulo State University (UNESP), 14800-060 Araraquara, SP, Brazil
| | - Alejandro Goméz
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | | | - Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| |
Collapse
|
2
|
Wang J, Wu W, Wang C, He S, Yu Z, Wu M, Wu Q. Application of carboxymethyl chitosan-based coating in fresh-cut apple preservation: Incorporation of guava leaf flavonoids and their noncovalent interaction study. Int J Biol Macromol 2023; 241:124668. [PMID: 37121413 DOI: 10.1016/j.ijbiomac.2023.124668] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Carboxymethyl chitosan (CMCS) has antibacterial activity and coating-forming ability. Under the impact of noncovalent interactions, the bioactivity and functionality of CMCS may be positively affected by the coexistence of flavonoids. This study investigated the effect of a CMCS coating incorporated with flavonoids from guava (Psidium guajava L. cv. Carmine) leaf (GLF) on the refrigeration of fresh-cut apples for preservation. Compared with the CMCS group, apples treated with the CMCS-GLF coating showed better quality (weight loss, browning index, firmness), nutritional value (ascorbic acid and total phenolic content), and microbial safety during storage. The mechanism study indicated that the hydrogen bonding, electrostatic, and hydrophobic interactions between CMCS and GLF (the carboxymethyl moiety of CMCS had the highest response priority and binding strength of the interaction with -C-O of GLF) changed the surface charge distribution and microstructure of CMCS, and increased its molecular weight, particle size, viscosity, and hydrophobicity. Thus, the CMCS-GLF coating exerted better bioactivities (antibacterial and antioxidant activity), and its film showed better mechanical and barrier properties. These results revealed that the noncovalent interaction with GLF could modify the physiochemical properties of CMCS, which was beneficial to improve its bioactivity and application value in fresh fruit preservation.
Collapse
Affiliation(s)
- Jingyi Wang
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Wenjuan Wu
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Chao Wang
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Shumin He
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Zuwei Yu
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Muci Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qian Wu
- Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan 430068, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
6
|
Zhao L, Zhang M, Mujumdar AS, Adhikari B, Wang H. Preparation of a Novel Carbon Dot/Polyvinyl Alcohol Composite Film and Its Application in Food Preservation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37528-37539. [PMID: 35944155 DOI: 10.1021/acsami.2c10869] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon dots (CDs) were synthesized with the facile hydrothermal method to produce CDs/polyvinyl alcohol (PVA) active food packaging films. The CDs had a diameter ranging from 2.01 to 5.61 nm and were well-dispersed. The effects of different concentrations of CDs on mechanical strength, water resistance, morphology, optical, and thermal performance of the CDs/PVA films were discussed. The incorporation of CDs in the PVA film improved its mechanical properties, water resistance properties, UV blocking properties, and thermal stability and endowed the composite film with antioxidant and antimicrobial properties. The maximum scavenging rates of 2,2-diphenyl-1-picrylhydrazyl and ABTS free radicals by the 0.50% CDs/PVA film were 72.81 and 97.08%, respectively. The inhibition zone diameters of the 0.50% CDs/PVA solution against Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), and Escherichia coli (E. coli) were 9.52, 8.21, and 9.05 mm, respectively. Using the 0.50% CDs/PVA film as active packaging, the shelf life of banana, jujube, and fried meatballs was observed to be extended significantly. These results demonstrate the viability of the CDs/PVA composite film as a promising active food packaging material.
Collapse
Affiliation(s)
- Linlin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, H9X3V9 Ste Anne de Bellevue, Quebec, Canada
| | - Benu Adhikari
- School of Applied Sciences, RMIT University, VIC3083 Melbourne, Australia
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd., 225000 Yangzhou, Jiangsu, China
| |
Collapse
|