1
|
Aiyedun PO, Sonibare MA, Gueye B, Albach DC, Heil J, Morlock GE. Antidiabetic and antioxidant profiling of 67 African trifoliate yam accessions by planar on-surface assays versus in vitro assays. Fitoterapia 2024:106299. [PMID: 39547454 DOI: 10.1016/j.fitote.2024.106299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Trifoliate yam (Dioscorea dumetorum) is traditionally used to treat diabetics in Nigeria. However, almost no information is available on its antidiabetic constituents and their natural variance. Hence, the activity of methanolic tuber extracts of 67 trifoliate yam accessions from the largest collection in Africa was proven by four colorimetric antidiabetic and antioxidant in vitro assays, as diabetes is also linked with oxidative stress. For the first time, selected accessions were also analyzed by planar bioactivity profiling. It has a comparatively higher, more differentiated information content, is more sustainable in terms of material consumption, and enables straightforward compound prioritization and characterization. Up to a dozen individual antioxidant zones were revealed as well as one prominent zone inhibiting α-glucosidase and α-amylase. The latter inhibition zone was tentatively assigned to palmitic, linoleic, oleic, linolenic, oxo-nonanoic fatty acids by direct elution to heated electrospray ionization high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Priscilla O Aiyedun
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Oduduwa Road, 200132 Ibadan, Oyo, Nigeria; Genetic Resources Centre, International Institute of Tropical Agriculture, Oyo Road, 200001 Ibadan, Oyo, Nigeria; Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Mubo A Sonibare
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Oduduwa Road, 200132 Ibadan, Oyo, Nigeria
| | - Badara Gueye
- Genetic Resources Centre, International Institute of Tropical Agriculture, Oyo Road, 200001 Ibadan, Oyo, Nigeria
| | - Dirk C Albach
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Julia Heil
- Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gertrud E Morlock
- Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; Center for Sustainable Food Systems, Justus Liebig University Giessen, Senckenbergstr. 3, 35390 Giessen, Germany.
| |
Collapse
|
2
|
Zang Z, Gong X, Cao L, Ni H, Chang H. Resistant starch from yam: Preparation, nutrition, properties and applications in the food sector. Int J Biol Macromol 2024; 273:133087. [PMID: 38871109 DOI: 10.1016/j.ijbiomac.2024.133087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Yam is a significant staple food and starch source, particularly in tropical and subtropical regions, holding the fourth position among the world's top ten tuber crops. Yam tubers are rich in essential nutrients and a diverse range of beneficial plant compounds, which contribute to their multifaceted beneficial functions. Furthermore, the abundant starch and resistant starch (RS) content in yam can fulfil the market demand for RS. The inherent and modified properties of yam starch and RS make them versatile ingredients for a wide range of food products, with the potential to become one of the most cost-effective raw materials in the food industry. In recent years, research on yam RS has experienced progressive expansion. This article provides a comprehensive summary of the latest research findings on yam starch and its RS, elucidating the feasibility of commercial RS production and the technology's impact on the physical and chemical properties of starch. Yam has emerged as a promising reservoir of tuber starch for sustainable RS production, with thermal, chemical, enzymatic and combination treatments proving to be effective manufacturing procedures for RS. The adaptability of yam RS allows for a wide range of food applications.
Collapse
Affiliation(s)
- Ziyan Zang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| | - Xiaoxiao Gong
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| | - Linhai Cao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| | - Hongxia Ni
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| | - Hui Chang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
3
|
Weber AC, Weber DA, Costa B, Dahmer BR, Cordeiro SG, Hoehne L, Ethur EM. Nutritional, textural and sensory properties of lasagna dough containing air yam, a non-conventional edible plant. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1332-1341. [PMID: 36936109 PMCID: PMC10020393 DOI: 10.1007/s13197-023-05679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
Abstract
The incorporation of non-conventional edible plants into gluten-free food products shows potential and the ability to increase nutritional properties. Therefore, the aim of this study was to develop a gluten-free air yam-based lasagna dough and to evaluate the nutritional, textural, and sensory properties. First, the air yam flour was obtained by drying the tubers at 55 °C for 16 h and then, mixed with the water and egg powder, it constituted the lasagna dough. The nutritional composition and bioaccessible mineral content of air yam flour and lasagna dough were evaluated, as well as the texture, microbiological and sensory properties of the lasagna dough. The results indicated that air yam flour and the lasagna dough had high dietary fiber contents, 17.1% and 9.4%, respectively. Additionally, the low-fat content found means that the lasagna dough can be considered both gluten-free and fat-free. The most bioaccessible mineral present was K in both air yam flour and lasagna dough. In sensory analysis, the lasagna dough containing air yam showed an intermediate acceptability in relation to two already commercialized lasagna doughs. This study shows an application to this group of plants that are still little explored, allowing the development to consumers and industries. Graphical abstract
Collapse
Affiliation(s)
- Ani Caroline Weber
- University of Taquari Valley, Lajeado, Rio Grande do Sul 95914-014 Brazil
| | | | - Bruna Costa
- University of Taquari Valley, Lajeado, Rio Grande do Sul 95914-014 Brazil
| | | | | | - Lucélia Hoehne
- University of Taquari Valley, Lajeado, Rio Grande do Sul 95914-014 Brazil
| | | |
Collapse
|
4
|
Wang P, Shan N, Ali A, Sun J, Luo S, Xiao Y, Wang S, Hu R, Huang Y, Zhou Q. Comprehensive evaluation of functional components, biological activities, and minerals of yam species (Dioscorea polystachya and D. alata) from China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Adomėnienė A, Venskutonis PR. Dioscorea spp.: Comprehensive Review of Antioxidant Properties and Their Relation to Phytochemicals and Health Benefits. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082530. [PMID: 35458730 PMCID: PMC9026138 DOI: 10.3390/molecules27082530] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 12/23/2022]
Abstract
Dioscorea, consisting of over 600 species, is the most important genus in the Dioscoreaceae family; however, the practically used plants, which are commonly called yam, are restricted to a remarkably smaller number of species. Numerous studies have reported the high nutritional value of yam, particularly as an alternative source of starch and some important micronutrients. Several Dioscorea species are widely used for various medicinal purposes as well. In many studies, the bioactivities and health benefits of Dioscorea extracts and other preparations have been related to the presence of phytochemicals, which possess antioxidant properties; they are related mainly to radical-scavenging capacity in chemical assays and positive effects on the endogenous antioxidant system in cell-based and in vivo assays. Considering the increasing number of publications on this topic and the absence of comprehensive and focused review papers on antioxidant potential, this article summarizes the results of studies on the antioxidant properties of Dioscorea spp. and their relation to phytochemicals and health benefits. A comprehensive survey of the published articles has revealed that the majority of studies have been performed with plant tubers (rhizomes, roots), while reports on leaves are rather scarce. In general, leaf extracts demonstrated stronger antioxidant potential than tuber preparations. This may be related to the differences in phytochemical composition: saponins, phenanthrenes and, for some pigment-rich species (purple yams), anthocyanins are important constituents in tubers, while phenolic acids and flavonoids are characteristic phytochemicals in the leaves. The review may assist in explaining ethnopharmacological knowledge on the health benefits of Dioscorea plants and their preparations; moreover, it may foster further studies of poorly investigated species, as well as their wider application in developing new functional foods and nutraceuticals.
Collapse
|
6
|
Iordache TA, Badea N, Mihaila M, Crisan S, Pop AL, Lacatusu I. Challenges in Coopted Hydrophilic and Lipophilic Herbal Bioactives in the Same Nanostructured Carriers for Effective Bioavailability and Anti-Inflammatory Action. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3035. [PMID: 34835798 PMCID: PMC8624441 DOI: 10.3390/nano11113035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022]
Abstract
There is ongoing research on various herbal bioactives and delivery systems which indicates that both lipid nanocarriers and herbal medicines will be fine tunned and integrated for future bio-medical applications. The current study was undertaken to systematically develop NLC-DSG-yam extract for the improved efficacy of herbal Diosgenin (DSG) in the management of anti-inflammatory disorders. NLCs were characterized regarding the mean size of the particles, morphological characteristics, physical stability in time, thermal behaviour, and entrapment efficiency of the herbal bioactive. Encapsulation efficiency and in vitro antioxidant activity measured the differences between the individual and dual co-loaded-NLC, the co-loaded one assuring a prolonged controlled release of DSG and a more emphasized ability of capturing short-life reactive oxygen species (ROS). NLCs safety properties were monitored following the in vitro MTS ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay) and RTCA (Real-Time Cell Analysis) assays. Concentrations less than 50 μg/mL showed no cytotoxic effects during in vitro cytotoxicity assays. Besides, the NLC-DSG-yam extract revealed a great anti-inflammatory effect, as the production of pro-inflammatory cytokines (TNF-alpha, IL-6) was significantly inhibited at 50 μg/mL NLC (e.g., 98.2% ± 1.07 inhibition of TNF-α, while for IL-6 the inhibition percentage was of 62% ± 1.07). Concluding, using appropriate lipid nanocarriers, the most desirable properties of herbal bioactives could be improved.
Collapse
Affiliation(s)
- Teodora-Alexandra Iordache
- Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (T.-A.I.); (N.B.)
- National Research & Development Institute for Food Bioresources—IBA Bucharest, 6th Dinu Vintila Street, 021102 Bucharest, Romania
| | - Nicoleta Badea
- Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (T.-A.I.); (N.B.)
| | - Mirela Mihaila
- Virology Institute “Stefan S. Nicolau”, Romanian Academy, Mihai Bravu Street No 285, 030304 Bucharest, Romania;
| | - Simona Crisan
- RD Center, AC HELCOR, Victor Babes St., 430082 Baia Mare, Romania;
| | - Anca Lucia Pop
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Ioana Lacatusu
- Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (T.-A.I.); (N.B.)
| |
Collapse
|
7
|
Sobuj MKA, Islam MA, Haque MA, Islam MM, Alam MJ, Rafiquzzaman SM. Evaluation of bioactive chemical composition, phenolic, and antioxidant profiling of different crude extracts of Sargassum coriifolium and Hypnea pannosa seaweeds. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00758-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Obidiegwu JE, Lyons JB, Chilaka CA. The Dioscorea Genus (Yam)-An Appraisal of Nutritional and Therapeutic Potentials. Foods 2020; 9:E1304. [PMID: 32947880 PMCID: PMC7555206 DOI: 10.3390/foods9091304] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/19/2022] Open
Abstract
The quest for a food secure and safe world has led to continuous effort toward improvements of global food and health systems. While the developed countries seem to have these systems stabilized, some parts of the world still face enormous challenges. Yam (Dioscorea species) is an orphan crop, widely distributed globally; and has contributed enormously to food security especially in sub-Saharan Africa because of its role in providing nutritional benefits and income. Additionally, yam has non-nutritional components called bioactive compounds, which offer numerous health benefits ranging from prevention to treatment of degenerative diseases. Pharmaceutical application of diosgenin and dioscorin, among other compounds isolated from yam, has shown more prospects recently. Despite the benefits embedded in yam, reports on the nutritional and therapeutic potentials of yam have been fragmented and the diversity within the genus has led to much confusion. An overview of the nutritional and health importance of yam will harness the crop to meet its potential towards combating hunger and malnutrition, while improving global health. This review makes a conscious attempt to provide an overview regarding the nutritional, bioactive compositions and therapeutic potentials of yam diversity. Insights on how to increase its utilization for a greater impact are elucidated.
Collapse
Affiliation(s)
- Jude E. Obidiegwu
- National Root Crops Research Institute, Umudike, Km 8 Umuahia-Ikot Ekpene Road, P.M.B 7006 Umuahia, Abia State, Nigeria
| | - Jessica B. Lyons
- Department of Molecular and Cell Biology and Innovative Genomics Institute, University of California, Berkeley, 142 Weill Hall #3200, Berkeley, CA 94720-3200, USA;
| | - Cynthia A. Chilaka
- Institute of Pharmacology and Toxicology, Julius Maximilian University of Würzburg, Versbacher Straβe 9, 97078 Würzburg, Germany; or
| |
Collapse
|