1
|
Cadar E, Pesterau AM, Prasacu I, Ionescu AM, Pascale C, Dragan AML, Sirbu R, Tomescu CL. Marine Antioxidants from Marine Collagen and Collagen Peptides with Nutraceuticals Applications: A Review. Antioxidants (Basel) 2024; 13:919. [PMID: 39199165 PMCID: PMC11351696 DOI: 10.3390/antiox13080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Collagen peptides and marine collagen are enormous resources currently utilized. This review aims to examine the scientific literature to determine which collagen peptides derived from marine sources and which natural active antioxidants from marine collagen have significant biological effects as health-promoting nutraceuticals. Marine collagen is extracted from both vertebrate and invertebrate marine creatures. For vertebrates, this includes fish skin, bones, scales, fins, and cartilage. For invertebrates, it includes mollusks, echinoderms, crustaceans, and poriferans. The method used involved data analysis to organize information for isolating and identifying marine biocompounds with antioxidant properties. Specifically, amino acids with antioxidant properties were identified, enabling the use of hydrolysates and collagen peptides as natural antioxidant nutraceuticals. The methods of extraction of hydrolyzed collagen and collagen peptides by different treatments are systematized. The structural characteristics of collagen, collagen peptides, and amino acids in fish skin and by-products, as well as in invertebrate organisms (jellyfish, mollusks, and crustaceans), are described. The antioxidant properties of different methods of collagen hydrolysates and collagen peptides are systematized, and the results are comparatively analyzed. Their use as natural antioxidant nutraceuticals expands the range of possibilities for the exploitation of natural resources that have not been widely used until now.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania;
| | - Ana-Maria Pesterau
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania;
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Ana-Maria Laura Dragan
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Bvd. Tomis, No. 145, 900591 Constanta, Romania
| |
Collapse
|
2
|
Inacio PAQ, Chaluppe FA, Aguiar GF, Coelho CDF, Vieira RP. Effects of Hydrolyzed Collagen as a Dietary Supplement on Fibroblast Activation: A Systematic Review. Nutrients 2024; 16:1543. [PMID: 38892477 PMCID: PMC11173906 DOI: 10.3390/nu16111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Our objective was to conduct a systematic review of the effects of hydrolyzed collagen supplementation on the proliferation and activation of fibroblasts. METHODS The search was conducted for journals that published articles in the English language, peer-reviewed, meeting the following criteria: (a) randomized clinical trials, (b) randomized studies in animals or humans, (c) in vitro studies, (d) studies using hydrolyzed collagens or collagen peptides, and (e) studies assessing alterations on fibroblasts as the primary or secondary outcome. We utilized the main journal databases PubMed/Web of Science and ongoing reviews by PROSPERO. For bias risk and methodological quality, we used an adaptation of the Downs and Black checklist. Our review followed the PRISMA checklist, conducted from February 2024 to the first week of March 2024, by two independent researchers (P.A.Q.I. and R.P.V.). RESULTS Eleven studies were included in this review, where our findings reinforce the notion that hydrolyzed collagens or collagen peptides at concentrations of 50-500 μg/mL are sufficient to stimulate fibroblasts in human and animal tissues without inducing toxicity. Different enzymatic processes may confer distinct biological properties to collagens, allowing for scenarios favoring fibroblast promotion or antioxidant effects. Lastly, collagens with lower molecular weights exhibit greater bioavailability to adjacent tissues. CONCLUSIONS Hydrolyzed collagens or collagen peptides with molecular sizes ranging from <3 to 3000 KDa promote the stimulation of fibroblasts in human tissues.
Collapse
Affiliation(s)
- Pedro Augusto Querido Inacio
- Laboratory of Pulmonary and Exercise Immunology (LABPEI), Evangelical University of Goias (Unievangelica), Avenida Universitária Km 3.5, Anápolis 75083-515, GO, Brazil; (P.A.Q.I.); (G.F.A.); (C.d.F.C.)
| | - Felipe Augusto Chaluppe
- Peptech Colagen from Brazil, 1500 North Halsted Street—Floor 2, Chicago, IL 60642-2517, USA;
| | - Gerson Ferreira Aguiar
- Laboratory of Pulmonary and Exercise Immunology (LABPEI), Evangelical University of Goias (Unievangelica), Avenida Universitária Km 3.5, Anápolis 75083-515, GO, Brazil; (P.A.Q.I.); (G.F.A.); (C.d.F.C.)
| | - Carly de Faria Coelho
- Laboratory of Pulmonary and Exercise Immunology (LABPEI), Evangelical University of Goias (Unievangelica), Avenida Universitária Km 3.5, Anápolis 75083-515, GO, Brazil; (P.A.Q.I.); (G.F.A.); (C.d.F.C.)
| | - Rodolfo P. Vieira
- Laboratory of Pulmonary and Exercise Immunology (LABPEI), Evangelical University of Goias (Unievangelica), Avenida Universitária Km 3.5, Anápolis 75083-515, GO, Brazil; (P.A.Q.I.); (G.F.A.); (C.d.F.C.)
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Rua Pedro Ernesto 240, São José dos Campos 12245-520, SP, Brazil
| |
Collapse
|
3
|
Gomathy M, Paul AJ, Krishnakumar V. A Systematic Review of Fish-Based Biomaterial on Wound Healing and Anti-Inflammatory Processes. Adv Wound Care (New Rochelle) 2024; 13:83-96. [PMID: 37166397 DOI: 10.1089/wound.2022.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Objective: To conduct a systematic literature review to study the effects of fish-based biomaterials on wound healing in both in vivo and in vitro animal models. Approach: This review covers the study reported in different articles between 2016 and August 2022 concentrating mainly on the cytotoxicity evaluation of different fish-based biomaterials on inflammation, reepithelialization and wound healing. Significance: This review shows considerable amount of research work carried out with fish-based biomaterials and collagen for treating burn wounds. Surprisingly there are only a few commercial products developed so far in this particular regard for surgical purpose and therefore, there is a way out and need for developing medical support product from fish-based biomaterials to treat and cure wounds. Recent Advances: Three-dimensional skin bioprinting technique is a large-scale solution for severe burn wounds that requires collagen as a raw material for printing, wherein fish collagen can be used in place of bovine and porcine, as it is biocompatible, promotes cell proliferation, adhesion, and migration, and degrades enzymatically. In the recent times, there are a few fish-based surgical products that have been formulated by Kerecis in United States. Critical Issues: The different fish-based biomaterial products are all mere supplements taken in orally as food or supplements till date and there is no proper proven medications that has been formulated so far in the field of wound healing and inflammation based on fish biomaterials except the surgical products that can be finger counted. Future Directions: Fish-based biomaterials are known for the medicinal properties that are used throughout the world and further investigations should be carried out to understand the actual physiochemical properties of its derivatives for the discovery of novel products and drugs.
Collapse
Affiliation(s)
- M Gomathy
- Department of Life Science, CHRIST (Deemed to be University), Bangalore Central Campus, Karnataka, India
| | - A John Paul
- Department of Zoology, St. Joseph's University, Bengaluru, India
| | - V Krishnakumar
- Department of Life Science, CHRIST (Deemed to be University), Bangalore Central Campus, Karnataka, India
| |
Collapse
|
4
|
Leem KH, Kim S, Lim J, Park HJ, Shin YC, Lee JS. Hydrolyzed Collagen Tripeptide Promotes Longitudinal Bone Growth in Childhood Rats via Increases in Insulin-Like Growth Factor-1 and Bone Morphogenetic Proteins. J Med Food 2023; 26:809-819. [PMID: 37862561 DOI: 10.1089/jmf.2023.k.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Previous studies have reported that collagen tripeptide (CTP) derived from collagen hydrolysate has various beneficial effects on health by protecting against skin aging and improving bone formation and cartilage regeneration. Collagen-Tripep20TM (CTP20), which is a low-molecular-weight CTP derived from fish skin, contains a bioactive CTP, Gly-Pro-Hyp >3.2% with a tripeptide content >20%. Herein, we investigated the osteogenic effects and mechanisms of CTP20 (<500 Da) on MG-63 osteoblast-like cells and SW1353 chondrocytes. And we measured promoting ratio of the longitudinal bone growth in childhood rats. First, CTP20 at 100 μg/mL elevated the proliferation (15.0% and 28.2%), alkaline phosphatase activity (29.3% and 32.0%), collagen synthesis (1.25- and 1.14-fold), and calcium deposition (1.18- and 1.15-fold) in MG-63 cells and SW1353, respectively. In addition, we found that CTP20 could promote the longitudinal growth and height of the growth plate of the tibia in childhood rats. CTP20 enhanced the protein expression of insulin-like growth factor-1 (IGF-1) in MG-63 and SW1353 cells, and in the growth plate of childhood rats, along with Janus Kinase 2, and signal transducer and activator of transcription 5 activation in MG-63 and SW1353 cells. CTP20 also elevated the expression levels of bone morphogenetic proteins (BMPs) in MG-63 and SW1353 cells and in the growth plates of childhood rats. These results indicate that CTP20 may promote the endochondral ossification and longitudinal bone growth, through enhancing of IGF-1 and BMPs. (Clinical Trial Registration number: smecae 19-09-01).
Collapse
Affiliation(s)
- Kang Hyun Leem
- College of Korean Medicine, Semyung University, Jecheon, Korea
| | - Sanga Kim
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Junsik Lim
- College of Korean Medicine, Semyung University, Jecheon, Korea
| | - Hae Jeong Park
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | |
Collapse
|
5
|
Xu S, Zhao Y, Song W, Zhang C, Wang Q, Li R, Shen Y, Gong S, Li M, Sun L. Improving the Sustainability of Processing By-Products: Extraction and Recent Biological Activities of Collagen Peptides. Foods 2023; 12:foods12101965. [PMID: 37238782 DOI: 10.3390/foods12101965] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Society and consumers are increasingly concerned about food safety and the sustainability of food production systems. A significant amount of by-products and discards are generated during the processing of aquatic animals, which still needs to be fully utilized by the food industry. The management and sustainable use of these resources are essential to avoiding environmental pollution and resource waste. These by-products are rich in biologically active proteins, which can be converted into peptides by enzymatic hydrolysis or fermentation treatment. Therefore, exploring the extraction of collagen peptides from these by-products using an enzymatic hydrolysis technology has attracted a wide range of attention from numerous researchers. Collagen peptides have been found to possess multiple biological activities, including antioxidant, anticancer, antitumor, hypotensive, hypoglycemic, and anti-inflammatory properties. These properties can enhance the physiological functions of organisms and make collagen peptides useful as ingredients in food, pharmaceuticals, or cosmetics. This paper reviews the general methods for extracting collagen peptides from various processing by-products of aquatic animals, including fish skin, scales, bones, and offal. It also summarizes the functional activities of collagen peptides as well as their applications.
Collapse
Affiliation(s)
- Shumin Xu
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Yuping Zhao
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Wenshan Song
- Marine Biomedical Research Institute of Qingdao, No. 23, Hong Kong East Road, Qingdao 266073, China
| | - Chengpeng Zhang
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Qiuting Wang
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Ruimin Li
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Yanyan Shen
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Shunmin Gong
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Mingbo Li
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| | - Leilei Sun
- College of Life Science, Yantai University, No. 30, Qing Quan Road, Yantai 264005, China
| |
Collapse
|
6
|
Sun S, Gao Y, Chen J, Liu R. Identification and release kinetics of peptides from tilapia skin collagen during alcalase hydrolysis. Food Chem 2022; 378:132089. [PMID: 35032798 DOI: 10.1016/j.foodchem.2022.132089] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/03/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Abstract
Collagen from tilapia skin was extracted and confirmed as type I collagen. Collagen was then hydrolyzed with alcalase for 4 h and the released peptides were identified. The structure-activity relationship of collagen-released peptides showed that proline at position C3 played a key role in improving ACE inhibitory activity, while proline at position C2 had a negative effect. Collagen peptide release kinetics showed that with the extension of time, the number of peptides increased dramatically at first, decreased, and then tended to be stable. This indicated that collagen peptides mainly originated from primary enzymolysis at the first stage and began to undergo secondary hydrolysis in the second stage. Afterwards, secondary enzymolysis was dominant at the third stage and finally remained stable at final two stages. Understanding the pattern of collagen peptide release kinetics might offer a powerful approach in the collagen-peptide food processing industry to better control food safety and quality.
Collapse
Affiliation(s)
- Shanshan Sun
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yahui Gao
- School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | - Junde Chen
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Rui Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
7
|
Hydrolyzed collagen from defatted sea bass skin and its conjugate with epigallocatechin gallate: In vitro antioxidant, anti-inflammatory, wound-healing and anti-obesity activities. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Woonnoi W, Chotphruethipong L, Tanasawet S, Benjakul S, Sutthiwong N, Sukketsiri W. Hydrolyzed Collagen from Salmon Skin Increases the Migration and Filopodia Formation of Skin Keratinocytes by Activation of FAK/Src Pathway. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/141515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Chotphruethipong L, Binlateh T, Hutamekalin P, Aluko RE, Tepaamorndech S, Zhang B, Benjakul S. Impact of Hydrolyzed Collagen from Defatted Sea Bass Skin on Proliferation and Differentiation of Preosteoblast MC3T3-E1 Cells. Foods 2021; 10:1476. [PMID: 34202207 PMCID: PMC8304286 DOI: 10.3390/foods10071476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is a serious problem affecting health of the elderly. Drugs (bisphosphonates) applied for treatment are often accompanied by adverse side effects. Thus, fish byproduct-derived peptides, particularly hydrolyzed collagen (HC) from defatted sea bass skin, could be a safe source of anti-osteoporosis agents. This study aimed to examine the effects of HC on proliferation and differentiation of preosteoblast cells. HC prepared using papain before Alcalase hydrolysis was determined for molecular weight (MW) distribution. Thereafter, the resulting HC (50-800 µg/mL) was added to the cell. Proliferation, alkaline phosphatase activity (AP-A) and mineralization of cells were investigated. Moreover, the expression of runt-related transcription factor 2 (RUNX2) and the p-Akt/Akt pathway were also determined using Western blot. The results showed that HC had an MW < 3 kDa. HC (50-200 µg/mL) could promote cell proliferation. Nevertheless, HC at 100 µg/mL (HC-100) had enhanced AP-A and increased mineralization during the first 7 days of culture. Moreover, HC-treated cells had higher calcium depositions than the control (p < 0.05). Additionally, cells treated with HC-100 had higher levels of RUNX2 and p-Akt expressions than control (p < 0.05). Therefore, HC could be a promising functional ingredient to promote osteoblast proliferation and differentiation, which could enhance bone strength.
Collapse
Affiliation(s)
- Lalita Chotphruethipong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Thunwa Binlateh
- School of Geriatric Oral Health, Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Surapun Tepaamorndech
- National Center of Genetic Engineering and Biotechnology Center (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Pathumthani 12120, Thailand;
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| |
Collapse
|
10
|
Chotphruethipong L, Hutamekalin P, Sukketsiri W, Benjakul S. Effects of sonication and ultrasound on properties and bioactivities of liposomes loaded with hydrolyzed collagen from defatted sea bass skin conjugated with epigallocatechin gallate. J Food Biochem 2021; 45:e13809. [PMID: 34145603 DOI: 10.1111/jfbc.13809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
Hydrolyzed collagen (HC) from defatted sea bass skin conjugated with 3% epigallocatechin gallate (EGCG) was prepared and the resulting HC-EGCG conjugate at various levels (0.25%-2%, w/v) was loaded into liposome. The obtained liposomes were subjected to sonication (S). Liposome loaded with 1% conjugate showed the highest encapsulation efficiency (EE) (p < .05). When the ultrasound-assisted process (UAP) at different amplitudes (20% and 40%) and times (2, 5, 10, and 15 min) were implemented, the highest EE of conjugate-loaded liposome was found at 20% amplitude for 2 min (p < .05). When S-liposome and UAP-liposome were lyophilized, decreasing EE of both samples was observed (p < .05). Lyophilized UAP-liposome had higher stability than lyophilized S-liposome during storage at 25℃ for 28 days. Additionally, antioxidant activity in the gastrointestinal track model system (GIMs) and digest obtained from GIMs were higher for UAP-liposome (p < .05). Therefore, liposome can be used for the delivery of conjugate. PRACTICAL APPLICATIONS: HC from defatted sea bass skin is considered to possess several bioactivities, especially skin nourishment and bone strengthening. Nevertheless, antioxidant activity, related to the treatment of several ailments, is still low for HC. Thus, grafting of HC with polyphenol such as EGCG via free radical method can be used for the enhancement of the antioxidant activity of HC. Although the resulting conjugate has augmented activity, it is unstable during storage and in the gastrointestinal digestion system. Liposome is a promising means to stabilize the conjugate under harsh condition, especially with the aid of the UAP. Thus, liposome loaded with conjugate having the reduced size has higher antioxidant activity with increased stability, which can have a wider range of applications.
Collapse
Affiliation(s)
- Lalita Chotphruethipong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Wanida Sukketsiri
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
11
|
Chotphruethipong L, Binlateh T, Hutamekalin P, Sukketsiri W, Aluko RE, Benjakul S. In vitro antioxidant and wound-healing activities of hydrolyzed collagen from defatted Asian sea bass skin as influenced by different enzyme types and hydrolysis processes. RSC Adv 2021; 11:18144-18151. [PMID: 35480907 PMCID: PMC9033432 DOI: 10.1039/d1ra03131g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 01/06/2023] Open
Abstract
Hydrolyzed collagen (HC) from defatted Asian sea bass skin was prepared by different enzymatic hydrolysis processes. For one-enzyme hydrolysis, papain (0.3 unit per g dry matter, DM) at 40 °C for 90 min or Alcalase (0.2 or 0.3 unit per g DM) at 50 °C for 90 min were used. The two-enzyme hydrolysis was accomplished with papain at 0.3 unit per g DM (P0.3), followed by Alcalase hydrolysis at 0.2 or 0.3 units per g DM (A0.2 or A0.3, respectively). HC prepared using the P0.3 + A0.3 process showed higher peptide yield, recovery and imino acid content in addition to stronger ABTS, DPPH radical scavenging activities and ferric reducing antioxidant power than other hydrolysis processes. HC obtained from the P0.3 + A0.3 process (at 125-500 μg mL-1) induced MRC-5 fibroblast proliferation and augmented migration and lamellipodia formation in the cells. Peptides with average molecular weight of 750 Da exhibited the highest ABTS radical scavenging activity while the 4652 Da fraction had the lowest. Thus, HC can be considered as a suitable ingredient to formulate functional products for skin nourishment and wound healing.
Collapse
Affiliation(s)
- Lalita Chotphruethipong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Thunwa Binlateh
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Wanida Sukketsiri
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
12
|
Therapeutic Potential of Tuna Backbone Peptide and Its Analogs: An In Vitro and In Silico Study. Molecules 2021; 26:molecules26072064. [PMID: 33916797 PMCID: PMC8038390 DOI: 10.3390/molecules26072064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Tuna backbone peptide (TBP) has been reported to exert potent inhibitory activity against lipid peroxidation in vitro. Since this bears relevant physiological implications, this study was undertaken to assess the impact of peptide modifications on its bioactivity and other therapeutic potential using in vitro and in silico approach. Some TBP analogs, despite lower purity than the parent peptide, exerted promising antioxidant activities in vitro demonstrated by ABTS radical scavenging assay and cellular antioxidant activity assay. In silico digestion of the peptides resulted in the generation of antioxidant, angiotensin-converting enzyme (ACE), and dipeptidyl peptidase-IV (DPPIV) inhibitory dipeptides. Using bioinformatics platforms, we found five stable TBP analogs that hold therapeutic potential with their predicted multifunctionality, stability, non-toxicity, and low bitterness intensity. This work shows how screening and prospecting for bioactive peptides can be improved with the use of in vitro and in silico approaches.
Collapse
|