1
|
Guo X, Li Q, Luo T, Han D, Zhu D, Wu Z. Postharvest Calcium Chloride Treatment Strengthens Cell Wall Structure to Maintain Litchi Fruit Quality. Foods 2023; 12:2478. [PMID: 37444216 DOI: 10.3390/foods12132478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Litchi (Litchi chinensis Sonn.) fruit deterioration occurs rapidly after harvest and is characterized by pericarp browning, pulp softening, and decay. In this study, we found that calcium chloride (CaCl2) treatment (5 g L-1 CaCl2 solution vacuum infiltration for 5 min) affected the cell wall component contents and cell wall-degrading enzyme activities of litchi fruit during storage at room temperature. CaCl2 treatment significantly increased the contents of Ca2+ and cellulose, while it decreased the water-soluble pectin content, and the activities of polygalacturonase, β-galactosidase, and cellulase in the litchi pericarp. Meanwhile, the treatment resulted in significantly increased contents of Ca2+, water-soluble pectin, ionic-soluble pectin, covalent-soluble pectin and hemicellulose, and upregulated activities of pectinesterase and β-galactosidase, while significantly decreasing the activities of polygalacturonase and cellulase in litchi pulp. The above results indicate that CaCl2 treatment strengthened the cell wall structure of litchi fruit. More importantly, the enzymatic browning of the pericarp, softening of the pulp, and disease incidence were delayed. The treatment had a more pronounced effect on the pericarp than on the pulp. We consider CaCl2 treatment to be a safe and effective treatment for maintaining the postharvest quality of litchi fruit.
Collapse
Affiliation(s)
- Xiaomeng Guo
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Qiao Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Tao Luo
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Dongmei Han
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou 510640, China
| | - Difa Zhu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhenxian Wu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Rastegar S, Shojaie A, Koy RAM. Foliar application of salicylic acid and calcium chloride delays the loss of chlorophyll and preserves the quality of broccoli during storage. J Food Biochem 2022; 46:e14154. [PMID: 35383976 DOI: 10.1111/jfbc.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
Abstract
Consumer awareness of broccoli's unusual color, rich flavor, and concentration of desired phytochemicals has led to a steady increase in consumption in recent years. However, its short shelf-life, which is linked with quick discoloration and degeneration after harvest, limits industrial production and marketing. The effect of pre-harvest salicylic acid (SA) and calcium chloride (Ca) and their combination on the post-harvest quality of broccoli during storage (5 ± 1°C) was explored in this study. The foliar spray treatments reduced weight loss of broccoli head during storage. At the end of storage, Ca (2%) alone and in combination with SA (0.01%) significantly maintained the chlorophyll concentration rather than control. The total phenols, flavonoid, and antioxidant capacity of the Ca (2%) + SA (0.01%) treated samples was significantly greater than the control. SA (0.01%) alone or in conjunction with Ca (2%), showed higher catalase (CAT) activity; however, Ca (1%), alone or in combination with SA (0.01%), showed higher peroxidase (POD) activity. Generally, the marketability of the treated broccoli was significantly greater than the control at the end of storage. Based on these findings, we believe Ca (2%) + SA (0.01%) improves the antioxidant system, delays chlorophyll degradation, and extends the shelf life of broccoli heads stored at 5 ± 1°C. It is proposed that the green color, marketability, and nutrient content of broccoli during postharvest handling and storage can be retained longer by foliar application of this treatment. PRACTICAL APPLICATIONS: Broccoli (Brassica oleracea L. Italaia) is a widely-consumed floral green vegetable due to its high content of nutrients and bioactive compounds. However, after harvest, florets rapidly senesce and suffer from yellowing which affects the quality of broccoli. The senescence of post-harvest broccoli is characterized by fresh weight loss, chlorophyll degradation, and a significant reduction in nutritional content. Therefore, preventing the decline in the quality of harvested broccoli is essential to maintain its economic and nutritional value. The results of this study showed that pre-harvest foliar application of Ca (2%) + SA (0.01%) with delayed weight loss, chlorophyll degradation, preservation of antioxidant compounds, and increased enzyme activity has a positive effect in maintaining broccoli heads quality during cold storage.
Collapse
Affiliation(s)
- Somayeh Rastegar
- Department of Horticultural Science, Faculty of Agriculture & Natural Resources, University of Hormozgan, Bandar Abbas, Islamic Republic of Iran
| | - Aazam Shojaie
- Department of Horticultural Science, Faculty of Agriculture & Natural Resources, University of Hormozgan, Bandar Abbas, Islamic Republic of Iran
| | - Rebaz Aswad Mirza Koy
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Erbil, Iraq
| |
Collapse
|
3
|
ZHANG W, LIN M, FENG X, YAO Z, WANG T, XU C. Effect of lemon essential oil-enriched coating on the postharvest storage quality of citrus fruits. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.125421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Mei LIN
- Zhejiang Institute of Citrus Research, China
| | - Xianju FENG
- Zhejiang Institute of Citrus Research, China
| | - Zhoulin YAO
- Zhejiang Institute of Citrus Research, China
| | - Tianyu WANG
- Zhejiang Institute of Citrus Research, China
| | - Chengnan XU
- Zhejiang Institute of Citrus Research, China
| |
Collapse
|
4
|
Transcriptomics Reveals the ERF2- bHLH2- CML5 Module Responses to H 2S and ROS in Postharvest Calcium Deficiency Apples. Int J Mol Sci 2021; 22:ijms222313013. [PMID: 34884817 PMCID: PMC8657956 DOI: 10.3390/ijms222313013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Calcium deficiency usually causes accelerated quality deterioration in postharvest fruit, whereas the underlining mechanism is still unclear. Here, we report that calcium deficiency induced the development of bitter pit on the surface of apple peels compared with the healthy appearance in control apples during postharvest storage. Physiological analysis indicates that calcium-deficient peels contained higher levels of superoxide anion (O2•−), malondialdehyde (MDA), total phenol, flavonoid contents and polyphenol oxidase (PPO) activity, and reduced calcium, H2S production, anthocyanin, soluble protein content, and peroxidase (POD) activity compared with those in calcium-sufficient peels. The principal component analysis (PCA) results show that calcium content, ROS, and H2S production were the main factors between calcium-deficient and calcium-sufficient apple peels. Transcriptome data indicated that four calmodulin-like proteins (CMLs), seven AP2/ERFs, and three bHLHs transcripts were significantly differentially expressed in calcium-deficient apple peels. RT-qPCR and correlation analyses further revealed that CML5 expression was significantly positively correlated with the expression of ERF2/17, bHLH2, and H2S production related genes. In addition, transcriptional co-activation of CML5 by ERF2 and bHLH2 was demonstrated by apple transient expression assays and dual-luciferase reporter system experiments. Therefore, these findings provide a basis for studying the molecular mechanism of postharvest quality decline in calcium-deficient apples and the potential interaction between Ca2+ and endogenous H2S.
Collapse
|
5
|
Martins V, Unlubayir M, Teixeira A, Lanoue A, Gerós H. Exogenous Calcium Delays Grape Berry Maturation in the White cv. Loureiro While Increasing Fruit Firmness and Flavonol Content. FRONTIERS IN PLANT SCIENCE 2021; 12:742887. [PMID: 34512709 PMCID: PMC8430324 DOI: 10.3389/fpls.2021.742887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 05/17/2023]
Abstract
Vineyard calcium (Ca) sprays have been increasingly used by grape growers to improve fruit firmness and thus maintain quality, particularly in periods of heavy rains and hail. The observation that Ca visibly modified berry size, texture, and color in the most prominent white cultivar of the DOC region 'Vinhos Verdes', cultivar (cv.) Loureiro, led us to hypothesize that Ca induced metabolic rearrangements that resulted in a substantial delay in fruit maturation. Targeted metabolomics by ultra-performance liquid chromatography coupled to mass spectrometry and directed transcriptomics were thus combined to characterize the metabolic and transcriptional profiles of cv. Loureiro berries that, together with firmness, °Brix, and fruit weight measurements, allowed to obtain an integrated picture of the biochemical and structural effects of Ca in this cultivar. Results showed that exogenous Ca decreased amino acid levels in ripe berries while upregulating PAL1 expression, and stimulated the accumulation of caftaric, coutaric, and fertaric acids. An increase in the levels of specific stilbenoids, namely E-piceid and E-ω-viniferin, was observed, which correlated with the upregulation of STS expression. Trace amounts of anthocyanins were detected in berries of this white cultivar, but Ca treatment further inhibited their accumulation. The increased berry flavonol content upon Ca treatment confirmed that Ca delays the maturation process, which was further supported by an increase in fruit firmness and decrease in weight and °Brix at harvest. This newly reported effect may be specific to white cultivars, a topic that deserves further investigation.
Collapse
Affiliation(s)
- Viviana Martins
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho – Campus de Gualtar, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- *Correspondence: Viviana Martins,
| | - Marianne Unlubayir
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, Tours, France
| | - António Teixeira
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho – Campus de Gualtar, Braga, Portugal
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, Tours, France
| | - Hernâni Gerós
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho – Campus de Gualtar, Braga, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho – Campus de Gualtar, Braga, Portugal
| |
Collapse
|