1
|
Guo H, Li H, Xiao Y, Wu DT, Gan RY, Kang Z, Huang Y, Gao H. Revisiting fermented buckwheat: a comprehensive examination of strains, bioactivities, and applications. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39989084 DOI: 10.1080/10408398.2025.2468367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Buckwheat, a nutrient-rich pseudocereal, is known for its various biological properties, but its antinutritional factors, such as phytic acid and tannins, can hinder nutrient absorption. Fermentation improves buckwheat's nutritional profile by enhancing bioactive compounds, increasing digestibility, and reducing antinutritional factors. This review comprehensively examines the effects of fermentation and microbial strains on the nutritional composition and functional properties of buckwheat, highlighting their impact on health benefits and potential applications in diverse food products. Fermentation significantly boosts essential nutrients, including amino acids, vitamins, minerals, and bioactive compounds, while reducing antinutritional factors like phytic acid and protease inhibitors. It also enhances antioxidant, antidiabetic, hypolipidemic, anti-inflammatory, and gut microbiota-regulating properties. However, there are notable gaps in research, including limited understanding of fermentation process control, heavy metal transformation, and pathogenic microorganism effects during fermentation. Addressing these gaps is crucial for optimizing the functional properties and ensuring the safety of fermented buckwheat in the food industry. Overall, fermented buckwheat holds significant potential as a functional ingredient for gluten-free foods, nondairy beverages, and other health-promoting products that cater to specific dietary needs.
Collapse
Affiliation(s)
- Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yue Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ding-Tao Wu
- Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Ren-You Gan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhiliang Kang
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, Sichuan, P. R. China
| | - Yina Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Jiang JH, Li QZ, Luo X, Yu J, Zhou LW. Transcriptome and Metabolome Reveal Accumulation of Key Metabolites with Medicinal Properties of Phylloporia pulla. Int J Mol Sci 2024; 25:11070. [PMID: 39456849 PMCID: PMC11507218 DOI: 10.3390/ijms252011070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Phylloporia pulla, a macrofungal species in the Hymenochaetales, Basidiomycota, is known to enhance the nutritional and bioactive properties of rice through co-fermentation; however, its own secondary metabolites are not well understood. In this study, an integrative analysis of transcriptome and metabolome data revealed that the accumulation of steroids, steroid derivatives, and triterpenoids in P. pulla peaks during the mid-growth stage, while the genes associated with these metabolites show higher expression levels from the early to mid-growth stages. Weighted gene co-expression network analysis identified several modules containing candidate genes involved in the synthesis of steroids, steroid derivatives, and triterpenoids. Specifically, six key hub genes were identified, along with their connectivity to other related genes, as potential catalysts in converting the precursor lanosterol to celastrol. This study enhances our understanding of the secondary metabolites of P. pulla and is essential for the selective utilization of these bioactive compounds.
Collapse
Affiliation(s)
- Ji-Hang Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.-H.J.)
| | - Qian-Zhu Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.-H.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Luo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.-H.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.-H.J.)
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.-H.J.)
| |
Collapse
|
3
|
Chen Q, Su J, Zhang Y, Li C, Zhu S. Phytochemical Profile and Bioactivity of Bound Polyphenols Released from Rosa roxburghii Fruit Pomace Dietary Fiber by Solid-State Fermentation with Aspergillus niger. Molecules 2024; 29:1689. [PMID: 38675509 PMCID: PMC11052053 DOI: 10.3390/molecules29081689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to investigate the phytochemical profile, bioactivity, and release mechanism of bound polyphenols (BPs) released from Rosa roxburghii fruit pomace insoluble dietary fiber (RPDF) through solid-state fermentation (SSF) with Aspergillus niger. The results indicated that the amount of BPs released from RPDF through SSF was 17.22 mg GAE/g DW, which was significantly higher than that achieved through alkaline hydrolysis extraction (5.33 mg GAE/g DW). The BPs released through SSF exhibited superior antioxidant and α-glucosidase inhibitory activities compared to that released through alkaline hydrolysis. Chemical composition analysis revealed that SSF released several main compounds, including ellagic acid, epigallocatechin, p-hydroxybenzoic acid, quercetin, and 3,4-dihydroxyphenylpropionic acid. Mechanism analysis indicated that the disruption of tight structure, chemical bonds, and hemicellulose was crucial for the release of BPs from RPDF. This study provides valuable information on the potential application of SSF for the efficient release of BPs from RPDF, contributing to the utilization of RPDF as a functional food ingredient.
Collapse
Affiliation(s)
- Qing Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.C.); (J.S.); (Y.Z.)
- School of Food and Health, Guangzhou City Polytechnic, Guangzhou 510405, China
| | - Juan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.C.); (J.S.); (Y.Z.)
| | - Yue Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.C.); (J.S.); (Y.Z.)
| | - Chao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.C.); (J.S.); (Y.Z.)
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Siming Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Q.C.); (J.S.); (Y.Z.)
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| |
Collapse
|
4
|
Li L, Cao X, Huang J, Zhang T, Wu Q, Xiang P, Shen C, Zou L, Li J, Li Q. Effect of Pleurotus eryngii mycelial fermentation on the composition and antioxidant properties of tartary buckwheat. Heliyon 2024; 10:e25980. [PMID: 38404826 PMCID: PMC10884446 DOI: 10.1016/j.heliyon.2024.e25980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
In this study, we investigated the effect of solid-state fermentation of Pleurotus eryngii on the composition and antioxidant activity of Tartary buckwheat (TB). Firstly, the solid-state fermentation of P. eryngii mycelium with buckwheat was carried out, and the fermentation process was explored. The results of the extraction process and method selection experiments showed that the percolation extraction method was superior to the other two methods. The results of extraction rate, active components and antioxidant activity measurements before and after fermentation of TB extract showed that the extraction rate increased about 1.7 times after fermentation. Total flavonoids, rutin and triterpene contents were increased after fermentation compared to control. Meanwhile, LC-MS results showed an increase in the content of the most important substances in the fermented TB extract and the incorporation of new components, such as oleanolic acid, ursolic acid, amino acids, and D-chiral inositol. The fermented TB extract showed stronger antioxidant activity, while the protein and amino acid contents increased by 1.93-fold and 1.94-fold, respectively. This research was the first to use P. eryngii to ferment TB and prepared a lyophilized powder that could be used directly using vacuum freeze-drying technology. Not only the use of solid-state fermentation technology advantages of edible fungi to achieve value-added buckwheat, but also to broaden the scope of TB applications. This study will provide ideas and directions for the development and application of edible mushroom fermentation technology and TB.
Collapse
Affiliation(s)
- Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xiaonian Cao
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Caihong Shen
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou, 646000, China
| |
Collapse
|
5
|
Tachie CYE, Onuh JO, Aryee ANA. Nutritional and potential health benefits of fermented food proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1223-1233. [PMID: 37740932 DOI: 10.1002/jsfa.13001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Protein fermentation continues to gain popularity as a result of several factors, including the cost-effectiveness of the process and the positive correlation of fermented protein consumption, with a reduced risk of developing diet-related diseases such as diabetes and cardiovascular disorders, as well as their enhanced nutritional and techno-functional properties. Nonetheless, the nutritional and health benefits of food protein fermentation such as enhanced nutrient bioavailability, reduced antinutritional factors (ANFs) and enriched bioactive peptides (BAPs) are often overlooked. The present study reviewed recent work on the influence of protein fermentation on nutrition and health. In total, 322 eligible studies were identified on the Scopus and Google Scholar databases out of which 69 studies were evaluated based on our inclusion criteria. RESULTS Fermented protein ingredients and products show reduced ANF content, enhanced digestibility and bioavailability, and increased antioxidant and other biological activities, such as probiotic, prebiotic, angiotensin-converting enzyme inhibitory and antihypertensive properties. In addition, co-products in protein fermentation such as BAPs possess and could contribute additional sensory and flavor properties, degrade toxins, and reduce allergens in foods. CONCLUSION Thus, fermentation is not only a method for food preservation, but also serves as a means for producing functional food products for consumer health promotion and nutrition enrichment. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Christabel Y E Tachie
- Delaware State University, College of Agriculture, Science and Technology, Food Science & Biotechnology Program, Department of Human Ecology, Dover, DE, USA
| | - John O Onuh
- Department of Food and Nutritional Sciences, College of Agriculture, Environment and Nutrition Science, Tuskegee University, Tuskegee, AL, USA
| | - Alberta N A Aryee
- Delaware State University, College of Agriculture, Science and Technology, Food Science & Biotechnology Program, Department of Human Ecology, Dover, DE, USA
| |
Collapse
|
6
|
Djorgbenoo R, Hu J, Hu C, Sang S. Fermented Oats as a Novel Functional Food. Nutrients 2023; 15:3521. [PMID: 37630712 PMCID: PMC10459665 DOI: 10.3390/nu15163521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Fermented oats are gaining popularity due to their nutritional value and the increasing consumer demand for health-conscious foods. These oats are believed to offer enhanced phytochemical and nutritional profiles compared to unfermented oats. The increased nutritional content of fermented oats is associated with various health benefits, including anti-inflammatory and antioxidant activities, which could potentially reduce the risk of chronic diseases. Further investigations are warranted to elucidate the nutritional benefits of fermented oats in human nutrition. This mini review provides a comprehensive overview of fermented oat products available on the market and the various production methods employed for fermenting oats. Furthermore, this review investigates how fermentation affects the chemical composition and biological functions of oats. Additionally, this manuscript presents some future perspectives on fermented oat products by discussing potential research directions and opportunities for further development. The findings presented in this review contribute to the expanding body of knowledge on fermented oats as a promising functional food, paving the way for future studies and applications in the field of nutrition and health.
Collapse
Affiliation(s)
| | | | | | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Research Campus, North Carolina Agricultural and Technical State University, Kannapolis, NC 28081, USA; (R.D.); (J.H.); (C.H.)
| |
Collapse
|
7
|
Zhao D, Yan M, Xu H, Liang H, Zhang J, Li M, Wang C. Antioxidant and Antiaging Activity of Fermented Coix Seed Polysaccharides on Caenorhabditis elegans. Nutrients 2023; 15:2474. [PMID: 37299437 PMCID: PMC10255515 DOI: 10.3390/nu15112474] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Aging is closely related to many diseases and is a long-term challenge that humans face. The oxidative damage caused by the imbalance of free radicals is an important factor in aging. In this study, we investigate the antioxidant and antiaging activities of fermented coix seed polysaccharides (FCSPs) via in vitro and in vivo experiments. The FCSPs were extracted by fermenting coix seed with Saccharomyces cerevisiae for 48 h and utilizing water-extracted coix seed polysaccharides (WCSPs) as a control. Their antiaging activity and mechanism were evaluated based on the antiaging model organism Caenorhabditis elegans (C. elegans). The results showed that the molecular weight of the FCSPs extracted by fermentation was smaller than that of the WCSPs, making them more easily absorbed and utilized. At a concentration of 5 g/L, the FCSPs' capacity to scavenge the DPPH·, ABTS+·, OH·, and O2-· radicals was greater than the WCSPs' capacity by 10.09%, 14.40%, 49.93%, and 12.86%, respectively. Moreover, C. elegans treated with FCSPs exhibited higher antioxidant enzyme activities and a lower accumulation of malonaldehyde. By inhibiting the expression of the pro-aging genes daf-2 and age-1, and upregulating the expression of the antiaging genes daf-16, sod-3, skn-1, and gcs-1 in the insulin/insulin-like growth factor-1 (IIS) signaling pathway, the FCSPs could effectively enhance stress tolerance and delay C. elegans aging. The lifespan of C. elegans in the FCSPs group was 5.91% higher than that of the WCSPs group. In conclusion, FCSPs exert better antioxidant and antiaging effects than WCSPs, which can act as a potential functional ingredient or supplement in food.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changtao Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (D.Z.); (M.Y.); (H.X.); (H.L.); (J.Z.); (M.L.)
| |
Collapse
|
8
|
Zhang H, Jiang F, Li L, Liu X, Yan JK. Recent advances in the bioactive polysaccharides and other key components from Phellinus spp. and their pharmacological effects: A review. Int J Biol Macromol 2022; 222:3108-3128. [DOI: 10.1016/j.ijbiomac.2022.10.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
9
|
Ma YJ, Gao WQ, Zhu XT, Kong WB, Zhang F, Yang HQ. Identification and profiling of the community structure and potential function of bacteria from the fruiting bodies of Sanghuangporus vaninii. Arch Microbiol 2022; 204:564. [PMID: 35982255 DOI: 10.1007/s00203-022-03174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022]
Abstract
Sanghuangporus sp., a medicinal and edible homologous macrofungus known as 'forest gold', which has good effects on antitumor, hypolipidemia and the treatment of gynecological diseases. However, the natural resources of fruiting body are on the verge of depletion due to its long growth cycle and over exploitation. The growth and metabolism of macrofungi are known to depend on the diverse bacterial community. Here, we characterized the diversity and potential function of bacteria inhabiting in the fruiting body of the most widely applied S. vaninii using a combination method of high-throughput sequencing with pure culturing for the first time, and tested the biological activities of bacterial isolates, of which Illumina NovaSeq provided a more comprehensive results on the bacterial community structure. Total 33 phyla, 82 classes, 195 orders, 355 families, 601 genera and 679 species were identified in the fruiting body, and our results revealed that the community was predominated by the common Proteobacteria, Gammaproteobacteria, Burkholderiales, Methylophilaceae (partly consistent with pure-culturing findings), and was dominated by the genera of distinctive Methylotenera and Methylomonas (yet-uncultured taxa). Simultaneously, the functional analysis showed that companion bacteria were involved in the pathways of carbohydrate transport and metabolism, metabolism of terpenoids and polyketides, cell wall/membrane/envelope biogenesis, etc. Hence, it was inferred that bacteria associated with fruiting body may have the potential to adjust the growth, development and active metabolite production of host S. vaninii combined with the tested results of indole-3-acetic acid and total antioxidant capacity. Altogether, this report first provided new findings which can be inspiring for further in-depth studies to exploit bioactive microbial resources for increased production of Sanghuangporus, as well as to explore the relationship between medicinal macrofungi and their associated endophytes.
Collapse
Affiliation(s)
- Yan-Jun Ma
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| | - Wei-Qian Gao
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xue-Tai Zhu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Wei-Bao Kong
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Fan Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Hong-Qin Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
10
|
Hou R, Zhou L, Fu Y, Wang T, Li Z, Zhou L, Zhang G, Tian X. Chemical characterization of two fractions from Sanghuangporus sanghuang and evaluation of antidiabetic activity. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
11
|
Zheng N, Ming Y, Chu J, Yang S, Wu G, Li W, Zhang R, Cheng X. Optimization of Extraction Process and the Antioxidant Activity of Phenolics from Sanghuangporus baumii. Molecules 2021; 26:3850. [PMID: 34202632 PMCID: PMC8270281 DOI: 10.3390/molecules26133850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Sanghuangporus baumii, is a widely used medicinal fungus. The polyphenols extracted from this fungus exert antioxidant, anti-inflammatory, and hypoglycemic effects. In this study, polyphenols from the fruiting bodies of S. baumii were obtained using the deep eutectic solvent (DES) extraction method. The factors affecting the extraction yield were investigated at different conditions. Based on the results from single-factor experiments, response surface methodology was used to optimize the extraction conditions. The scavenging ability of the polyphenols on •OH, DPPH, and ABTS+ was determined. The results showed that the DES system composed of choline chloride and malic acid had the best extraction yield (6.37 mg/g). The optimal extraction parameters for response surface methodology were as follows: 42 min, 58 ℃, 1:34 solid-liquid (mg/mL), and water content of 39%. Under these conditions, the yield of polyphenols was the highest (12.58 mg/g). At 0.30 mg/mL, the scavenging ability of the polyphenols on •OH, DPPH, and ABTS+ was 95.71%, 91.08%, and 85.52%, respectively. Thus, the method using DES was more effective than the conventional method of extracting phenolic compounds from the fruiting bodies of S. baumii. Moreover, the extracted polyphenols exhibited potent antioxidant activity.
Collapse
Affiliation(s)
- Na Zheng
- Shandong Key Lab of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China; (N.Z.); (J.C.); (S.Y.); (G.W.); (W.L.)
| | - Yongfei Ming
- School of Life Science, Ludong University, Yantai 264025, China;
| | - Jianzhi Chu
- Shandong Key Lab of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China; (N.Z.); (J.C.); (S.Y.); (G.W.); (W.L.)
| | - Shude Yang
- Shandong Key Lab of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China; (N.Z.); (J.C.); (S.Y.); (G.W.); (W.L.)
| | - Guochao Wu
- Shandong Key Lab of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China; (N.Z.); (J.C.); (S.Y.); (G.W.); (W.L.)
| | - Weihuan Li
- Shandong Key Lab of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China; (N.Z.); (J.C.); (S.Y.); (G.W.); (W.L.)
| | - Rui Zhang
- Shandong Key Lab of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China; (N.Z.); (J.C.); (S.Y.); (G.W.); (W.L.)
| | - Xianhao Cheng
- Shandong Key Lab of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China; (N.Z.); (J.C.); (S.Y.); (G.W.); (W.L.)
| |
Collapse
|