1
|
Vaidya VG, Naik NN, Ganu G, Parmar V, Jagtap S, Saste G, Bhatt A, Mulay V, Girme A, Modi SJ, Hingorani L. Clinical pharmacokinetic evaluation of Withania somnifera (L.) Dunal root extract in healthy human volunteers: A non-randomized, single dose study utilizing UHPLC-MS/MS analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117603. [PMID: 38122911 DOI: 10.1016/j.jep.2023.117603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal; (Solanaceae), commonly known as Ashwagandha, is one of the most significant medicinal herbs in 'Ayurveda', a traditional Indian medicine used for centuries with evidence in scriptures. Ashwagandha was mentioned in old Ayurvedic medical literature such as Charaka Samhita and Sushruta Samhita for improving weight and strength, with multiple citations for internal and exterior usage in emaciation and nourishing the body. Ethnopharmacological evidence revealed that it was used to relieve inflammation, reduce abdominal swelling, as a mild purgative, and treat swollen glands. The root was regarded as a tonic, aphrodisiac, and emmenagogue in the Unani tradition of the Indian medicinal system. Further, Ashwagandha has been also described as an Ayurvedic medicinal plant in the Ayurvedic Pharmacopoeia of India extending informed therapeutic usage and formulations. Despite the widespread ethnopharmacological usage of Ashwagandha, clinical pharmacokinetic parameters are lacking in the literature; hence, the findings of this study will be relevant for calculating doses for future clinical evaluations of Ashwagandha root extract. AIM This study aimed to develop a validated and highly sensitive bioanalytical method for quantifying withanosides and withanolides of the Ashwagandha root extract in human plasma to explore its bioaccessibility. Further to apply a developed method to perform pharmacokinetics of standardized Withania somnifera (L.) Dunal root extract (WSE; AgeVel®/Witholytin®) capsules in healthy human volunteers. METHODS A sensitive, reliable, and specific ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS/MS) method was developed and validated for the simultaneous quantification of five major withanosides and withanolides (withanoside IV, withanoside V, withanolide A, withaferin A, and 12-deoxy-withastramonolide) in human plasma. Further for the study, eighteen healthy male volunteers (18-45 years) were enrolled in a non-randomized, open-label, single period, single treatment, clinical pharmacokinetic study and given a single dose (500 mg) of WSE (AgeVel®/Witholytin®) capsules containing not less than 7.5 mg of total withanolides under fasting condition. Later, pharmacokinetic profiles were assessed using the plasma concentration of each bioactive constituent Vs. time data. RESULTS For all five constituents, the bioanalytical method demonstrated high selectivity, specificity, and linearity. There was no carryover, and no matrix effect was observed. Furthermore, the inter-day and intra-day precision and accuracy results fulfilled the acceptance criteria. Upon oral administration of WSE capsules, Cmax was found to be 0.639 ± 0.211, 2.926 ± 1.317, 2.833 ± 0.981, and 5.498 ± 1.986 ng/mL for withanoside IV, withanolide A, withaferin A, and 12-deoxy-withastramonolide with Tmax of 1.639 ± 0.993, 1.361 ± 0.850, 0.903 ± 0.273, and 1.375 ± 0.510 h respectively. Further, withanoside V was also detected in plasma; but its concentration was found below LLOQ. CONCLUSION The novel and first-time developed bioanalytical method was successfully applied for the quantification of five bio-active constituents in human volunteers following administration of WSE capsules, indicating that withanosides and withanolides were rapidly absorbed from the stomach, have high oral bioavailability, and an optimum half-life to produce significant pharmacological activity. Further, AgeVel®/Witholytin® was found safe and well tolerated after oral administration, with no adverse reaction observed at a 500 mg dose.
Collapse
Affiliation(s)
- Vidyadhar G Vaidya
- Lokmanya Medical Research Centre and Hospital, Pune, 411033, Maharashtra, India.
| | - Ninad N Naik
- Lokmanya Medical Research Centre and Hospital, Pune, 411033, Maharashtra, India.
| | - Gayatri Ganu
- Mprex Healthcare Pvt. Ltd., Pune, 411057, Maharashtra, India.
| | - Vijay Parmar
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | - Shubham Jagtap
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | - Ganesh Saste
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | - Ankit Bhatt
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | - Vallabh Mulay
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | - Aboli Girme
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | | | - Lal Hingorani
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| |
Collapse
|
2
|
Piriformospora indica: Biodiversity, Ecological Significances, and Biotechnological Applications for Agriculture and Allied Sectors. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Amani S, Mohebodini M, Khademvatan S, Jafari M, Kumar V. Piriformospora indica based elicitation for overproduction of phenolic compounds by hairy root cultures of Ficus carica. J Biotechnol 2020; 327:43-53. [PMID: 33387592 DOI: 10.1016/j.jbiotec.2020.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/26/2023]
Abstract
Ficus carica L. is an important source of phenolic and flavonoid compounds with valuable pharmaceutical application across various diseases. The current study was carried out to investigate the influence of Piriformospora indica elicitation on growth, production of phenolic compounds, antioxidant capacity, and expression level of flavonoid biosynthetic pathway genes in hairy root (HR) cultures of F. carica. The maximum improvement in accumulation of phenolic compounds was observed when HR culture of Ficus carica L. was exposed to 2% culture filtrate of P. indica for 72 h: gallic acid (80.5- fold), caffeic acid (26.2-fold), coumaric acid (4.5-fold), and cinnamic acid (60.1-fold), apigenin (27.6-fold) and rutin (5.7-fold). While the highest levels of chlorogenic acid (4.9-fold) and quercetin flavonoid (8.8-fold) were obtained after 48 h elicitation with culture filtrate and cell extract of P. indica at 6% (v/v), respectively. The analysis of biosynthetic genes revealed that the exposure to fungal elicitors resulted in up-regulation of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT) and MYB3 transcription factor. This study shows the potential of P. indica as an efficacious elicitor for enhancing the secondary metabolites production by F. carica HRs.
Collapse
Affiliation(s)
- Shahla Amani
- Department of Horticulture Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehdi Mohebodini
- Department of Horticulture Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Shahram Khademvatan
- Cellular and Molecular Research Center & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Morad Jafari
- Department of Plant Production and Genetics, Urmia University, Urmia, Iran
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
4
|
Shaikh S, Shriram V, Khare T, Kumar V. Biotic elicitors enhance diosgenin production in Helicteres isora L. suspension cultures via up-regulation of CAS and HMGR genes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:593-604. [PMID: 32205933 PMCID: PMC7078398 DOI: 10.1007/s12298-020-00774-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/23/2020] [Accepted: 02/13/2020] [Indexed: 05/10/2023]
Abstract
In an attempt to find an alternative and potent source of diosgenin, a steroidal saponin in great demand for its pharmaceutical importance, Helicteres isora suspension cultures were explored for diosgenin extraction. The effect of biotic elicitors on the biosynthesis of diosgenin, in suspension cultures of H. isora was studied. Bacterial as well as fungal elicitors such as Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus niger were applied at varying concentrations to investigate their effects on diosgenin content. The HPLC based quantification of the treated samples proved that amongst the biotic elicitors, E. coli (1.5%) proved best with a 9.1-fold increase in diosgenin content over respective control cultures. Further, the scaling-up of the suspension culture to shake-flask and ultimately to bioreactor level were carried out for production of diosgenin. During all the scaling-up stages, diosgenin yield obtained was in the range between 7.91 and 8.64 mg l-1, where diosgenin content was increased with volume of the medium. The quantitative real-time PCR (qRT-PCR) analysis showed biotic elicitors induced the expression levels of regulatory genes in diosgenin biosynthetic pathway, the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and cycloartenol synthase (CAS), which can be positively correlated with elicited diosgenin contents in those cultures. The study holds significance as H. isora represents a cleaner and easy source of diosgenin where unlike other traditional sources, it is not admixed with other steroidal saponins, and the scaled-up levels of diosgenin achieved herein have the potential to be explored commercially.
Collapse
Affiliation(s)
- Samrin Shaikh
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College (Savitribai Phule Pune University), Akurdi, Pune, 411044 India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
| |
Collapse
|
5
|
Treatments with native Coleus forskohlii endophytes improve fitness and secondary metabolite production of some medicinal and aromatic plants. Int Microbiol 2019; 23:345-354. [PMID: 31823202 DOI: 10.1007/s10123-019-00108-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/25/2019] [Accepted: 11/21/2019] [Indexed: 01/07/2023]
Abstract
Endophytes have been shown to play a crucial role in determining the fitness of host plant during their association, yet the cross-functional effect of endophytes of one plant on another plant remains largely uncharacterized. In this study, we attempt to analyze the effect of native endophytes of Coleus forskohlii (Phialemoniopsis cornearis (SF1), Macrophomina pseudophaseolina (SF2), and Fusarium redolens (RF1), isolated from stem and root parts) on plant growth and secondary metabolite enhancement in medicinal plant Andrographis paniculata, and aromatic plants Pelargonium graveolens and Artemisia pallens. Here, we report, endophytic treatments with SF2 (21%) and RF1 (9%) in A. paniculata resulted in significant enhancement of andrographolide along with plant primary productivity. Correspondingly, application of fungal endophytes RF1, SF1, and SF2 significantly improved the plant growth (11 to 40%), shoot weight (28 to 34%), oil content (44 to 58%), and oil yield (72 to 122%) in P. graveolens. Interestingly, treatment of A. pallens with three fungal endophytes resulted in significant enhancement of plant productivity and oil content (12 to 80%) and oil yield (32 to 139%). Subsequently, the endophyte treatments RF1 and SF1 enhanced davanone (13 to 22%) and ethyl cinnamate (11 to 22%) content. However, SF2 endophyte-treated plants did not show any improvement in ethyl cinnamate content but enhanced the content of davanone (10%), a signature component of davana essential oil. Overall, results depict cross-functional role of native endophytes of C. forskohlii and repurposing of functional endophytes for sustainable cultivation of economically important medicinal and aromatic crops.
Collapse
|
6
|
Khalid M, Rahman SU, Huang D. Molecular mechanism underlying Piriformospora indica-mediated plant improvement/protection for sustainable agriculture. Acta Biochim Biophys Sin (Shanghai) 2019; 51:229-242. [PMID: 30883651 DOI: 10.1093/abbs/gmz004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/02/2023] Open
Abstract
The beneficial endophytic microorganisms have received significant attention in agriculture because of their exceptional capabilities to facilitate functions like nutrient enrichment, water status, and stress tolerance (biotic and abiotic). This review signifies the molecular mechanisms to better understand the Piriformospora indica-mediated plants improvement or protection for sustainable agriculture. P. indica, an endophytic fungus, belonging to the order Sebacinales (Basidiomycota), is versatile in building mutualistic associations with a variety of plants including pteridophytes, bryophytes, gymnosperms, and angiosperms. P. indica has enormous potential to manipulate the hormonal pathway such as the production of indole-3-acetic acid which in turn increases root proliferation and subsequently improves plant nutrient acquisition. P. indica also enhances components of the antioxidant system and expression of stress-related genes which induce plant stress tolerance under adverse environmental conditions. P. indica has tremendous potential for crop improvement because of its multi-dimensional functions such as plant growth promotion, immunomodulatory effect, biofertilizer, obviates biotic (pathogens) and abiotic (metal toxicity, water stress, soil structure, salt, and pH) stresses, phytoremediator, and bio-herbicide. Considering the above points, herein, we reviewed the physiological and molecular mechanisms underlying P. indica-mediated plants improvement or protection under diverse agricultural environment. The first part of the review focuses on the symbiotic association of P. indica with special reference to biotic and abiotic stress tolerance and host plant root colonization mechanisms, respectively. Emphasis is given to the expression level of essential genes involved in the processes that induce changes at the cellular level. The last half emphasizes critical aspects related to the seed germination, plant yield, and nutrients acquisition.
Collapse
Affiliation(s)
- Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Saeed-ur- Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Innate endophytic fungus, Aspergillus terreus as biotic elicitor of withanolide A in root cell suspension cultures of Withania somnifera. Mol Biol Rep 2019; 46:1895-1908. [PMID: 30706360 DOI: 10.1007/s11033-019-04641-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022]
Abstract
In the present study, root cell suspension cultures of W. somnifera were elicited with mycelial extract (1% w/v) and culture filtrate (5% v/v) of their native endophytic fungus Aspergillus terreus 2aWF in shake flask. Culture filtrate of A. terreus 2aWF significantly elicits withanolide A at 6H (12.20 ± 0.52 µg/g FCB). However, with A. terreus 2aWF mycelial extract, withanolide A content was higher at 24H (10.29 µg/g FCB). Withanolide A content was maximum with salicylic acid (0.1 mM) treatment at 24H (8.3 ± 0.20 µg/g FCB). Further, expression analysis of withanolide pathway genes, hydrogen peroxide production, and lipid peroxidation was carried out after 48H of elicitation with 2aWF mycelial extract and culture filtrate. The expression levels of withanolides biosynthetic pathway genes, viz. HMGR, DXR, FPPS, SQS, SQE, CAS, SMT1, STE1 and CYP710A1 were quantified by real time PCR at 48H of elicitation. In all the treatments, the expression levels of key genes were significantly upregulated as compared to untreated suspension cells. Hydrogen peroxide was noticeably enhanced in SA, mycelia extract and culture filtrate, at 20% (115 ± 4.40 nM/g FCB), 42% (137.5 ± 3.62 nM/g FCB), and 27% (122.8 ± 1.25 nM/g FCB) respectively; however, lipid peroxidation was 0.288 ± 0.014, 0.305 ± 0.041 and 0.253 ± 0.007 (µM/gm FCB) respectively, higher than the control (0.201 ± 0.007 µM/gm FCB).
Collapse
|
8
|
Pandey SS, Singh S, Pandey H, Srivastava M, Ray T, Soni S, Pandey A, Shanker K, Babu CSV, Banerjee S, Gupta MM, Kalra A. Endophytes of Withania somnifera modulate in planta content and the site of withanolide biosynthesis. Sci Rep 2018; 8:5450. [PMID: 29615668 PMCID: PMC5882813 DOI: 10.1038/s41598-018-23716-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022] Open
Abstract
Tissue specific biosynthesis of secondary metabolites is a distinguished feature of medicinal plants. Withania somnifera, source of pharmaceutically important withanolides biosynthesizes withaferin-A in leaves and withanolide-A in roots. To increase the in planta withanolides production, a sustainable approach needs to be explored. Here, we isolated endophytes from different parts of W. somnifera plants and their promising role in in planta withanolide biosynthesis was established in both in-vivo grown as well in in-vitro raised composite W. somnifera plants. Overall, the fungal endophytes improved photosynthesis, plant growth and biomass, and the root-associated bacterial endophytes enhanced the withanolide content in both in-vivo and in-vitro grown plants by modulating the expression of withanolide biosynthesis genes in leaves and roots. Surprisingly, a few indole-3-acetic acid (IAA)-producing and nitrogen-fixing root-associated endophytes could induce the biosynthesis of withaferin-A in roots by inducing in planta IAA-production and upregulating the expression of withanolide biosynthesis genes especially MEP-pathway genes (DXS and DXR) in roots as well. Results indicate the role of endophytes in modulating the synthesis and site of withanolides production and the selected endophytes can be used for enhancing the in planta withanolide production and enriching roots with pharmaceutically important withaferin-A which is generally absent in roots.
Collapse
Affiliation(s)
- Shiv S Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Sucheta Singh
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Harshita Pandey
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Madhumita Srivastava
- Analytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Tania Ray
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Sumit Soni
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Alok Pandey
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Karuna Shanker
- Analytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - C S Vivek Babu
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Allalasandra, GKVK Post, Bangalore, 560065, India
| | - Suchitra Banerjee
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - M M Gupta
- Analytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Alok Kalra
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| |
Collapse
|