1
|
Ghodhbane-Gtari F, Fattouch S, Gtari M. Is Pseudofrankia, the non-nitrogen-fixing and/or non-nodulating actinorhizal nodule dweller, mutualistic or parasitic? Insights from genome-predictive analysis. Int Microbiol 2024:10.1007/s10123-024-00624-5. [PMID: 39707115 DOI: 10.1007/s10123-024-00624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
This study re-evaluates Pseudofrankia strains, traditionally regarded as parasitic dwellers of actinorhizal root nodules due to their inability to fix nitrogen (Fix -) and/or nodulate (Nod -), as potential plant growth-promoting bacteria (PGPB). We compared plant growth-promoting traits (PGPTs) between Pseudofrankia strains, including one newly sequenced strain BMG5.37 in this study and typical (Fix + /Nod +) Frankia, Protofrankia, and Parafrankia, as well as non-frankia actinorhizal species Nocardia and Micromonospora, and the phytopathogenic Streptomyces. Although lacking nitrogen-fixing genes typically found in mutualistic Frankiaceae strains, Pseudofrankia may compensate through predicted pathways for denitrification and nitrate utilization. Functional profiling suggests potential for phosphorus solubilization, gibberellin production, and vitamin metabolism, as well as bioremediation of pollutants. Pseudofrankia strains are predicted to show moderate resistance to heavy metals, with a stronger tolerance to arsenic and tellurium compared to Frankia. Furthermore, they are anticipated to exhibit significant biotic and abiotic stress resistance, including oxidative and osmotic stress. Predictive data also indicate that Pseudofrankia strains may have root colonization abilities and may play a role in plant signaling and phytohormone production, particularly in auxin and gibberellin pathways. Secretion systems, especially CE-Type VI, are predicted to be highly developed in Pseudofrankia, suggesting potential for effective plant interactions. These findings position Pseudofrankia strains as promising candidates for plant growth promotion, although experimental validation and the integration of transcriptomic or proteomic data are needed to confirm these predictions.
Collapse
Affiliation(s)
- Faten Ghodhbane-Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Science and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
- Department of Fundamental Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of La Manouba, Manouba, Tunisia
| | - Sami Fattouch
- Department of Biological and Chemical Engineering, LR EcoChemistry, National Institute of Applied Science and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
| | - Maher Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Science and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia.
| |
Collapse
|
2
|
Mhamdi R, Gtari M. Tracking the trajectory of frankia research through bibliometrics: trends and future directions. Can J Microbiol 2024; 70:551-564. [PMID: 39255516 DOI: 10.1139/cjm-2024-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Frankia represent a unique group of filamentous, sporangia-forming bacteria, renowned for their exceptional capacity to establish symbiotic partnerships with actinorhizal plants. The objective of this paper is to offer quantitative insights into the current state of frankia research and its future potential. A comprehensive bibliometric analysis covering the years 2000-2022 was conducted using Scopus and SciVal. A steady increase in both annual publication and international collaboration has been observed, particularly since 2013. Research performance metrics for the last 5 years (2018-2022) indicate China and India as leaders with high Field-Weighted Citation Impact scores. This analysis highlighted prominent authors, research groups, and the evolving research landscape, suggesting an increasing focus on molecular and genomic aspects. The genomic era has transformed our understanding of frankia biology, highlighting their significance in diverse ecological and agricultural contexts. This study comprehensively maps the evolving landscape of frankia research, emphasizing key milestones that have catalysed international interest in frankia-actinorhizal research, expanding our perception of frankia's capabilities beyond its traditional symbiotic role. As research in this field progresses, a deeper comprehension of frankia-plant interactions, symbiotic signalling, and the intricacies of metabolic pathways holds the promise of revealing innovative techniques for optimizing nitrogen fixation and broadening the spectrum of host plants.
Collapse
Affiliation(s)
- Ridha Mhamdi
- Centre of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Maher Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| |
Collapse
|
3
|
Gtari M, Maaoui R, Ghodhbane-Gtari F, Ben Slama K, Sbissi I. MAGs-centric crack: how long will, spore-positive Frankia and most Protofrankia, microsymbionts remain recalcitrant to axenic growth? Front Microbiol 2024; 15:1367490. [PMID: 39144212 PMCID: PMC11323853 DOI: 10.3389/fmicb.2024.1367490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Nearly 50 years after the ground-breaking isolation of the primary Comptonia peregrina microsymbiont under axenic conditions, efforts to isolate a substantial number of Protofrankia and Frankia strains continue with enduring challenges and complexities. This study aimed to streamline genomic insights through comparative and predictive tools to extract traits crucial for isolating specific Frankia in axenic conditions. Pangenome analysis unveiled significant genetic diversity, suggesting untapped potential for cultivation strategies. Shared metabolic strategies in cellular components, central metabolic pathways, and resource acquisition traits offered promising avenues for cultivation. Ecological trait extraction indicated that most uncultured strains exhibit no apparent barriers to axenic growth. Despite ongoing challenges, potential caveats, and errors that could bias predictive analyses, this study provides a nuanced perspective. It highlights potential breakthroughs and guides refined cultivation strategies for these yet-uncultured strains. We advocate for tailored media formulations enriched with simple carbon sources in aerobic environments, with atmospheric nitrogen optionally sufficient to minimize contamination risks. Temperature adjustments should align with strain preferences-28-29°C for Frankia and 32-35°C for Protofrankia-while maintaining an alkaline pH. Given potential extended incubation periods (predicted doubling times ranging from 3.26 to 9.60 days, possibly up to 21.98 days), patience and rigorous contamination monitoring are crucial for optimizing cultivation conditions.
Collapse
Affiliation(s)
- Maher Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Radhi Maaoui
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Faten Ghodhbane-Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
- Higher Institute of Biotechnology Sidi Thabet, University of La Manouba, Tunisia
| | - Karim Ben Slama
- LR Bioresources, Environment, and Biotechnology (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imed Sbissi
- LR Pastoral Ecology, Arid Regions Institute, University of Gabes, Medenine, Tunisia
| |
Collapse
|
4
|
Demergasso C, Neilson JW, Tebes-Cayo C, Véliz R, Ayma D, Laubitz D, Barberán A, Chong-Díaz G, Maier RM. Hyperarid soil microbial community response to simulated rainfall. Front Microbiol 2023; 14:1202266. [PMID: 37779711 PMCID: PMC10537920 DOI: 10.3389/fmicb.2023.1202266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/31/2023] [Indexed: 10/03/2023] Open
Abstract
The exceptionally long and protracted aridity in the Atacama Desert (AD), Chile, provides an extreme, terrestrial ecosystem that is ideal for studying microbial community dynamics under hyperarid conditions. Our aim was to characterize the temporal response of hyperarid soil AD microbial communities to ex situ simulated rainfall (5% g water/g dry soil for 4 weeks) without nutrient amendment. We conducted replicated microcosm experiments with surface soils from two previously well-characterized AD hyperarid locations near Yungay at 1242 and 1609 masl (YUN1242 and YUN1609) with distinct microbial community compositions and average soil relative humidity levels of 21 and 17%, respectively. The bacterial and archaeal response to soil wetting was evaluated by 16S rRNA gene qPCR, and amplicon sequencing. Initial YUN1242 bacterial and archaeal 16S rRNA gene copy numbers were significantly higher than for YUN1609. Over the next 4 weeks, qPCR results showed significant increases in viable bacterial abundance, whereas archaeal abundance decreased. Both communities were dominated by 10 prokaryotic phyla (Actinobacteriota, Proteobacteria, Chloroflexota, Gemmatimonadota, Firmicutes, Bacteroidota, Planctomycetota, Nitrospirota, Cyanobacteriota, and Crenarchaeota) but there were significant site differences in the relative abundances of Gemmatimonadota and Chloroflexota, and specific actinobacterial orders. The response to simulated rainfall was distinct for the two communities. The actinobacterial taxa in the YUN1242 community showed rapid changes while the same taxa in the YUN1609 community remained relatively stable until day 30. Analysis of inferred function of the YUN1242 microbiome response implied an increase in the relative abundance of known spore-forming taxa with the capacity for mixotrophy at the expense of more oligotrophic taxa, whereas the YUN1609 community retained a stable profile of oligotrophic, facultative chemolithoautotrophic and mixotrophic taxa. These results indicate that bacterial communities in extreme hyperarid soils have the capacity for growth in response to simulated rainfall; however, historic variations in long-term hyperaridity exposure produce communities with distinct putative metabolic capacities.
Collapse
Affiliation(s)
- Cecilia Demergasso
- Biotechnology Center “Profesor Alberto Ruíz”, Universidad Católica del Norte, Antofagasta, Chile
| | - Julia W. Neilson
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Cinthya Tebes-Cayo
- Biotechnology Center “Profesor Alberto Ruíz”, Universidad Católica del Norte, Antofagasta, Chile
- Department of Geology, Faculty of Engineering and Geological Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Roberto Véliz
- Biotechnology Center “Profesor Alberto Ruíz”, Universidad Católica del Norte, Antofagasta, Chile
| | - Diego Ayma
- Department of Mathematics, Faculty of Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Daniel Laubitz
- Steele Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Guillermo Chong-Díaz
- Department of Geology, Faculty of Engineering and Geological Sciences, Universidad Católica del Norte, Antofagasta, Chile
| | - Raina M. Maier
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
5
|
Pujic P, Carro L, Fournier P, Armengaud J, Miotello G, Dumont N, Bourgeois C, Saupin X, Jame P, Selak GV, Alloisio N, Normand P. Frankia alni Carbonic Anhydrase Regulates Cytoplasmic pH of Nitrogen-Fixing Vesicles. Int J Mol Sci 2023; 24:ijms24119162. [PMID: 37298114 DOI: 10.3390/ijms24119162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
A phyloprofile of Frankia genomes was carried out to identify those genes present in symbiotic strains of clusters 1, 1c, 2 and 3 and absent in non-infective strains of cluster 4. At a threshold of 50% AA identity, 108 genes were retrieved. Among these were known symbiosis-associated genes such as nif (nitrogenase), and genes which are not know as symbiosis-associated genes such as can (carbonic anhydrase, CAN). The role of CAN, which supplies carbonate ions necessary for carboxylases and acidifies the cytoplasm, was thus analyzed by staining cells with pH-responsive dyes; assaying for CO2 levels in N-fixing propionate-fed cells (that require a propionate-CoA carboxylase to yield succinate-CoA), fumarate-fed cells and N-replete propionate-fed cells; conducting proteomics on N-fixing fumarate and propionate-fed cells and direct measurement of organic acids in nodules and in roots. The interiors of both in vitro and nodular vesicles were found to be at a lower pH than that of hyphae. CO2 levels in N2-fixing propionate-fed cultures were lower than in N-replete ones. Proteomics of propionate-fed cells showed carbamoyl-phosphate synthase (CPS) as the most overabundant enzyme relative to fumarate-fed cells. CPS combines carbonate and ammonium in the first step of the citrulline pathway, something which would help manage acidity and NH4+. Nodules were found to have sizeable amounts of pyruvate and acetate in addition to TCA intermediates. This points to CAN reducing the vesicles' pH to prevent the escape of NH3 and to control ammonium assimilation by GS and GOGAT, two enzymes that work in different ways in vesicles and hyphae. Genes with related functions (carboxylases, biotin operon and citrulline-aspartate ligase) appear to have undergone decay in non-symbiotic lineages.
Collapse
Affiliation(s)
- Petar Pujic
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| | - Lorena Carro
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
- Departamento de Microbiología y Genética, Facultad de CC Agrarias y Ambientales, Universidad de Salamanca, Plaza Doctores de la Reina, 37007 Salamanca, Spain
| | - Pascale Fournier
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 30200 Bagnols-sur-Cèze, France
| | - Guylaine Miotello
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris Saclay, CEA, INRAE, 30200 Bagnols-sur-Cèze, France
| | | | - Caroline Bourgeois
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Xavier Saupin
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Patrick Jame
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Gabriela Vuletin Selak
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Nicole Alloisio
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| | - Philippe Normand
- Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université de Lyon, Université Claude Bernard Lyon I, INRAE, UMRA1418, Cedex, 69622 Villeurbanne, France
| |
Collapse
|
6
|
Kim Tiam S, Boubakri H, Bethencourt L, Abrouk D, Fournier P, Herrera-Belaroussi A. Genomic Insights of Alnus-Infective Frankia Strains Reveal Unique Genetic Features and New Evidence on Their Host-Restricted Lifestyle. Genes (Basel) 2023; 14:530. [PMID: 36833457 PMCID: PMC9956245 DOI: 10.3390/genes14020530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/23/2023] Open
Abstract
The present study aimed to use comparative genomics to explore the relationships between Frankia and actinorhizal plants using a data set made of 33 Frankia genomes. The determinants of host specificity were first explored for "Alnus-infective strains" (i.e., Frankia strains belonging to Cluster Ia). Several genes were specifically found in these strains, including an agmatine deiminase which could possibly be involved in various functions as access to nitrogen sources, nodule organogenesis or plant defense. Within "Alnus-infective strains", Sp+ Frankia genomes were compared to Sp- genomes in order to elucidate the narrower host specificity of Sp+ strains (i.e., Sp+ strains being capable of in planta sporulation, unlike Sp- strains). A total of 88 protein families were lost in the Sp+ genomes. The lost genes were related to saprophytic life (transcriptional factors, transmembrane and secreted proteins), reinforcing the proposed status of Sp+ as obligatory symbiont. The Sp+ genomes were also characterized by a loss of genetic and functional paralogs, highlighting a reduction in functional redundancy (e.g., hup genes) or a possible loss of function related to a saprophytic lifestyle (e.g., genes involved in gas vesicle formation or recycling of nutrients).
Collapse
Affiliation(s)
- Sandra Kim Tiam
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
- UMR CNRS 5557 Ecologie Microbienne, INRA UMR 1418, Centre d’Etude des Substances Naturelles, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Hasna Boubakri
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Lorine Bethencourt
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Danis Abrouk
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Pascale Fournier
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Aude Herrera-Belaroussi
- Université de Lyon, F-69361 Lyon, France, Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRA UMR 1418, Ecologie Microbienne, F-69622 Villeurbanne, France
| |
Collapse
|
7
|
Kucho KI, Asukai K, Nguyen TV. NAD + Synthetase is Required for Free-living and Symbiotic Nitrogen Fixation in the Actinobacterium Frankia casuarinae. Microbes Environ 2023; 38. [PMID: 36858533 PMCID: PMC10037102 DOI: 10.1264/jsme2.me22093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Frankia spp. are multicellular actinobacteria that fix atmospheric dinitrogen (N2) not only in the free-living state, but also in root-nodule symbioses with more than 200 plant species, called actinorhizal plants. To identify novel Frankia genes involved in N2 fixation, we previously isolated mutants of Frankia casuarinae that cannot fix N2. One of these genes, mutant N3H4, did not induce nodulation when inoculated into the host plant Casuarina glauca. Cell lineages that regained the ability to fix N2 as free-living cells were isolated from the mutant cell population. These restored strains also regained the ability to stimulate nodulation. A comparative ana-lysis of the genomes of mutant N3H4 and restored strains revealed that the mutant carried a mutation (Thr584Ile) in the glutamine-dependent NAD+ synthetase gene (Francci3_3146), while restored strains carried an additional suppressor mutation (Asp478Asn) in the same gene. Under nitrogen-depleted conditions, the concentration of NAD(H) was markedly lower in the mutant strain than in the wild type, whereas it was higher in restored strains. These results indicate that glutamine-dependent NAD+ synthetase plays critical roles in both free-living and symbiotic N2 fixation in Frankia.
Collapse
Affiliation(s)
- Ken-Ichi Kucho
- Graduate School of Science and Engineering, Kagoshima University
| | - Koya Asukai
- Graduate School of Science and Engineering, Kagoshima University
| | - Thanh Van Nguyen
- Graduate School of Science and Engineering, Kagoshima University
| |
Collapse
|
8
|
Nouioui I, Ghodhbane-Gtari F, Pötter G, Klenk HP, Goodfellow M. Novel species of Frankia, Frankia gtarii sp. nov. and Frankia tisai sp. nov., isolated from a root nodule of Alnus glutinosa. Syst Appl Microbiol 2023; 46:126377. [PMID: 36379075 DOI: 10.1016/j.syapm.2022.126377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Abstract
The status of four Frankia strains isolated from a root nodule of Alnus glutinosa was established in a polyphasic study. Taxogenomics and phenotypic features show that the isolates belong to the genus Frankia. All four strains form extensively branched substrate mycelia, multilocular sporangia, vesicles, lack aerial hyphae, but contain meso-diaminopimelic acid as the diamino acid of the peptidoglycan, galactose, glucose, mannose, ribose, xylose and traces of rhamnose as cell wall sugars, iso-C16:0 as the predominant fatty acid, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol as the major polar lipids, have comparable genome sizes to other cluster 1, Alnus-infective strains with structural and accessory genes associated with nitrogen fixation. The genome sizes of the isolates range from 7.0 to 7.7 Mbp and the digital DNA G + C contents from 71.3 to 71.5 %. The four sequenced genomes are rich in biosynthetic gene clusters predicted to express for novel specialized metabolites, notably antibiotics. 16S rRNA gene and whole genome sequence analyses show that the isolates fall into two lineages that are closely related to the type strains of Frankia alni and Frankia torreyi. All of these taxa are separated by combinations of phenotypic properties and by digital DNA:DNA hybridization scores which indicate that they belong to different genomic species. Based on these results, it is proposed that isolates Agncl-4T and Agncl-10, and Agncl-8T and Agncl-18, be recognised as Frankia gtarii sp. nov. and Frankia tisai sp. nov. respectively, with isolates Agncl-4T (=DSM 107976T = CECT 9711T) and Agncl-8T (=DSM 107980T = CECT 9715T) as the respective type strains.
Collapse
Affiliation(s)
- Imen Nouioui
- Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany.
| | - Faten Ghodhbane-Gtari
- Institut Supérieur de Biotechnologie de Sidi Thabet, Université de La Manouba, Tunisia; USCR Bactériologie Moléculaire & Génomique, Institut National des Sciences Appliquées & de Technologie, Université de Carthage, Tunisia
| | - Gabriele Pötter
- Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
9
|
Sindhu SS, Sehrawat A, Glick BR. The involvement of organic acids in soil fertility, plant health and environment sustainability. Arch Microbiol 2022; 204:720. [DOI: 10.1007/s00203-022-03321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
10
|
Gtari M. Taxogenomic status of phylogenetically distant Frankia clusters warrants their elevation to the rank of genus: A description of Protofrankia gen. nov., Parafrankia gen. nov., and Pseudofrankia gen. nov. as three novel genera within the family Frankiaceae. Front Microbiol 2022; 13:1041425. [PMID: 36425027 PMCID: PMC9680954 DOI: 10.3389/fmicb.2022.1041425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
The genus Frankia is at present the sole genus in the family Frankiaceae and encompasses filamentous, sporangia-forming actinomycetes principally isolated from root nodules of taxonomically disparate dicotyledonous hosts named actinorhizal plants. Multiple independent phylogenetic analyses agree with the division of the genus Frankia into four well-supported clusters. Within these clusters, Frankia strains are well defined based on host infectivity range, mode of infection, morphology, and their behaviour in culture. In this study, phylogenomics, overall genome related indices (OGRI), together with available data sets for phenotypic and host-plant ranges available for the type strains of Frankia species, were considered. The robustness and the deep radiation observed in Frankia at the subgeneric level, fulfilling the primary principle of phylogenetic systematics, were strengthened by establishing genome criteria for new genus demarcation boundaries. Therefore, the taxonomic elevation of the Frankia clusters to the rank of the genus is proposed. The genus Frankia should be revised to encompass cluster 1 species only and three novel genera, Protofrankia gen. nov., Parafrankia gen. nov., and Pseudofrankia gen. nov., are proposed to accommodate clusters 2, 3, and 4 species, respectively. New combinations for validly named species are also provided.
Collapse
Affiliation(s)
- Maher Gtari
- USCR Bactériologie Moléculaire & Génomique, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Tunis, Tunisia
| |
Collapse
|
11
|
Chetri SPK, Rahman Z, Thomas L, Lal R, Gour T, Agarwal LK, Vashishtha A, Kumar S, Kumar G, Kumar R, Sharma K. Paradigms of actinorhizal symbiosis under the regime of global climatic changes: New insights and perspectives. J Basic Microbiol 2022; 62:764-778. [PMID: 35638879 DOI: 10.1002/jobm.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/17/2022] [Accepted: 05/14/2022] [Indexed: 11/05/2022]
Abstract
Nitrogen occurs as inert and inaccessible dinitrogen gaseous form (N2 ) in the atmosphere. Biological nitrogen fixation is a chief process that makes this dinitrogen (N2 ) accessible and bioavailable in the form of ammonium (NH4 + ) ions. The key organisms to fix nitrogen are certain prokaryotes, called diazotrophs either in the free-living form or establishing significant mutual relationships with a variety of plants. On such examples is ~95-100 MY old incomparable symbiosis between dicotyledonous trees and a unique actinobacterial diazotroph in diverse ecosystems. In this association, the root of the certain dicotyledonous tree (~25 genera and 225 species) belonging to three different taxonomic orders, Fagales, Cucurbitales, and Rosales (FaCuRo) known as actinorhizal trees can host a diazotroph, Frankia of order Frankiales. Frankia is gram-positive, branched, filamentous, sporulating, and free-living soil actinobacterium. It resides in the specialized, multilobed, and coralloid organs (lateral roots but without caps), the root nodules of actinorhizal tress. This review aims to provide systematic information on the distribution and the phylogenetic diversity of hosts from FaCuRo and their micro-endosymbionts (Frankia spp.), colonization mechanisms, and signaling pathways. We also aim to provide details on developmental and physiological imperatives for gene regulation and functional genomics of symbiosis, phenomenal restoration ecology, influences of contemporary global climatic changes, and anthropogenic impacts on plant-Frankia interactions for the functioning of ecosystems and the biosphere.
Collapse
Affiliation(s)
| | - Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, Delhi, India
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, New Delhi, Delhi, India
| | - Ratan Lal
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Tripti Gour
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Lokesh Kumar Agarwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Akanksha Vashishtha
- Department of Plant Protection, CCS University, Meerut, Uttar Pradesh, India
| | - Sachin Kumar
- Department of Botany, Shri Venkateshwara College, University of Delhi, New Delhi, Delhi, India
| | - Gaurav Kumar
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, Delhi, India
| | - Rajesh Kumar
- Department of Botany, Hindu College, University of Delhi, New Delhi, Delhi, India
| | - Kuldeep Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
12
|
Gueddou A, Sarker I, Sen A, Ghodhbane-Gtari F, Benson DR, Armengaud J, Gtari M. Effect of actinorhizal root exudates on the proteomes of Frankia soli NRRL B-16219, a strain colonizing the root tissues of its actinorhizal host via intercellular pathway. Res Microbiol 2021; 173:103900. [PMID: 34800660 DOI: 10.1016/j.resmic.2021.103900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022]
Abstract
Frankia and actinorhizal plants exchange signals in the rhizosphere leading to specific mutual recognition of partners and nitrogen-fixing nodule organogenesis. Frankia soli strain NRRL B-16219, from the Elaeagnus specificity group, colonizes the root tissues of its actinorhizal host through direct intercellular penetration of root epidermis cells and cortex. Here, we studied the early proteogenomic response of strain NRRL B-16219 to treatment with root exudates from compatible Elaeagnus angustifolia, and incompatible Ceanothus thyrsiflorus and Coriaria myrtifolia, host plants grown in nitrogen depleted hydroponic medium. Next-generation proteomics was used to identify the main Frankia proteins differentially expressed in response to the root exudates. No products of the nod genes present in B-16219 were detected. Proteins specifically upregulated in presence of E. angustifolia root exudates include those connected to nitrogen fixation and assimilation (glutamate synthetase, hydrogenase and squalene synthesis), respiration (oxidative phosphorylation and citric acid cycle pathways), oxidative stress (catalase, superoxide dismutase, and peroxidase), proteolysis (proteasome, protease, and peptidase) and plant cell wall degrading proteins involved in the depolymerization of celluloses (endoglucanase, glycosyltransferase, beta-mannanases, glycoside hydrolase and glycosyl hydrolase). Proteomic data obtained in this study will help link signaling molecules/factors to their biosynthetic pathways once those factors have been fully characterized.
Collapse
Affiliation(s)
- Abdellatif Gueddou
- USCR Bactériologie Moléculaire & Génomique, Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia; LR Microorganismes & Biomolécules Actives, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 - El Manar Tunisia
| | - Indrani Sarker
- Bioinformatics Facility, University of North Bengal, Siliguri, India
| | - Arnab Sen
- Bioinformatics Facility, University of North Bengal, Siliguri, India
| | - Faten Ghodhbane-Gtari
- USCR Bactériologie Moléculaire & Génomique, Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia; LR Microorganismes & Biomolécules Actives, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 - El Manar Tunisia
| | - David R Benson
- Department of Molecular and Cell Biology, U-3125, University of Connecticut, Storrs, CT, USA
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour La Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France
| | - Maher Gtari
- USCR Bactériologie Moléculaire & Génomique, Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia; LR Microorganismes & Biomolécules Actives, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 - El Manar Tunisia.
| |
Collapse
|
13
|
Draft Genome Sequence for
Frankia
sp. Strain BMG5.11, a Nitrogen-Fixing Bacterium Isolated from Elaeagnus angustifolia. Microbiol Resour Announc 2020; 9:9/37/e00824-20. [PMID: 32912917 PMCID: PMC7484076 DOI: 10.1128/mra.00824-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Frankia sp. strain BMG5.11, which was isolated from Elaeagnus angustifolia nodules, is able to infect other actinorhizal plants, including Elaeagnaceae, Rhamnaceae, Colletieae, Gymnostoma, and Myricaceae. Here, we report the 11.3-Mbp draft genome sequence of Frankia sp. strain BMG5.11, with a G+C content of 69.9% and 9,926 candidate protein-encoding genes. Frankia sp. strain BMG5.11, which was isolated from Elaeagnus angustifolia nodules, is able to infect other actinorhizal plants, including Elaeagnaceae, Rhamnaceae, Colletieae, Gymnostoma, and Myricaceae. Here, we report the 11.3-Mbp draft genome sequence of Frankia sp. strain BMG5.11, with a G+C content of 69.9% and 9,926 candidate protein-encoding genes.
Collapse
|
14
|
Huisman R, Geurts R. A Roadmap toward Engineered Nitrogen-Fixing Nodule Symbiosis. PLANT COMMUNICATIONS 2020; 1:100019. [PMID: 33404552 PMCID: PMC7748023 DOI: 10.1016/j.xplc.2019.100019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/06/2019] [Accepted: 12/27/2019] [Indexed: 05/26/2023]
Abstract
In the late 19th century, it was discovered that legumes can establish a root nodule endosymbiosis with nitrogen-fixing rhizobia. Soon after, the question was raised whether it is possible to transfer this trait to non-leguminous crops. In the past century, an ever-increasing amount of knowledge provided unique insights into the cellular, molecular, and genetic processes controlling this endosymbiosis. In addition, recent phylogenomic studies uncovered several genes that evolved to function specifically to control nodule formation and bacterial infection. However, despite this massive body of knowledge, the long-standing objective to engineer the nitrogen-fixing nodulation trait on non-leguminous crop plants has not been achieved yet. In this review, the unsolved questions and engineering strategies toward nitrogen-fixing nodulation in non-legume plants are discussed and highlighted.
Collapse
Affiliation(s)
- Rik Huisman
- Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Rene Geurts
- Wageningen University, Department of Plant Sciences, Laboratory of Molecular Biology, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| |
Collapse
|
15
|
Stable Transformation of the Actinobacteria Frankia spp. Appl Environ Microbiol 2019; 85:AEM.00957-19. [PMID: 31152017 DOI: 10.1128/aem.00957-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022] Open
Abstract
A stable and efficient plasmid transfer system was developed for nitrogen-fixing symbiotic actinobacteria of the genus Frankia, a key first step in developing a genetic system. Four derivatives of the broad-host-range cloning vector pBBR1MCS were successfully introduced into different Frankia strains by a filter mating with Escherichia coli strain BW29427. Initially, plasmid pHKT1 that expresses green fluorescent protein (GFP) was introduced into Frankia casuarinae strain CcI3 at a frequency of 4.0 × 10-3, resulting in transformants that were tetracycline resistant and exhibited GFP fluorescence. The presence of the plasmid was confirmed by molecular approaches, including visualization on agarose gel and PCR. Several other pBBR1MCS plasmids were also introduced into F. casuarinae strain CcI3 and other Frankia strains at frequencies ranging from 10-2 to 10-4, and the presence of the plasmids was confirmed by PCR. The plasmids were stably maintained for over 2 years and through passage in a plant host. As a proof of concept, a salt tolerance candidate gene from the highly salt-tolerant Frankia sp. strain CcI6 was cloned into pBBR1MCS-3. The resulting construct was introduced into the salt-sensitive F. casuarinae strain CcI3. Endpoint reverse transcriptase PCR (RT-PCR) showed that the gene was expressed in F. casuarinae strain CcI3. The expression provided an increased level of salt tolerance for the transformant. These results represent stable plasmid transfer and exogenous gene expression in Frankia spp., overcoming a major hurdle in the field. This step in the development of genetic tools in Frankia spp. will open up new avenues for research on actinorhizal symbiosis.IMPORTANCE The absence of genetic tools for Frankia research has been a major hindrance to the associated field of actinorhizal symbiosis and the use of the nitrogen-fixing actinobacteria. This study reports on the introduction of plasmids into Frankia spp. and their functional expression of green fluorescent protein and a cloned gene. As the first step in developing genetic tools, this technique opens up the field to a wide array of approaches in an organism with great importance to and potential in the environment.
Collapse
|
16
|
Lau ICK, Feyereisen R, Nelson DR, Bell SG. Analysis and preliminary characterisation of the cytochrome P450 monooxygenases from Frankia sp. EuI1c (Frankia inefficax sp.). Arch Biochem Biophys 2019; 669:11-21. [PMID: 31082352 DOI: 10.1016/j.abb.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
Frankia bacteria are nitrogen fixing species from the Actinobacterium phylum which live on the root nodules of plants. They have been hypothesised to have significant potential for natural product biosynthesis. The cytochrome P450 monooxygenase complement of Frankia sp. EuI1c (Frankia inefficax sp.), which comprises 68 members, was analysed. Several members belonged to previously uncharacterised bacterial P450 families. There was an unusually high number of CYP189 family members (21) suggesting that this family has undergone gene duplication events which are classified as "blooms". The likely electron transfer partners for the P450 enzymes were also identified and analysed. These consisted of predominantly [3Fe-4S] cluster containing ferredoxins (eight), a single [2Fe-2S] ferredoxin and a couple of ferredoxin reductases. Three of these CYP family members were produced and purified, using Escherichia coli as a host, and their substrate range was characterised. CYP1027H1 and CYP150A20 bound a broad range of norisoprenoids and terpenoids. CYP1074A2 was highly specific for certain steroids including testosterone, progesterone, stanolone and 4-androstene-3,17-dione. It is likely that steroids are the physiological substrates of CYP1074A2. These results also give an indication that terpenoids are the likely substrates of CYP1027H1 and CYP150A2. The large number of P450s belonging to distinct families as well as the associated electron transfer partners found in different Frankia strains highlights the importance of this family of enzymes has in the secondary metabolism of these bacteria.
Collapse
Affiliation(s)
- Ian C K Lau
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David R Nelson
- University of Tennessee Health Science Center, Dept. of Microbiology, Immunology and Biochemistry, 858 Madison Ave. Suite G01, Memphis, TN, 38163, USA
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
17
|
Nouioui I, Cortés-albayay C, Carro L, Castro JF, Gtari M, Ghodhbane-Gtari F, Klenk HP, Tisa LS, Sangal V, Goodfellow M. Genomic Insights Into Plant-Growth-Promoting Potentialities of the Genus Frankia. Front Microbiol 2019; 10:1457. [PMID: 31333602 PMCID: PMC6624747 DOI: 10.3389/fmicb.2019.01457] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
This study was designed to determine the plant growth promoting (PGP) potential of members of the genus Frankia. To this end, the genomes of 21 representative strains were examined for genes associated directly or indirectly with plant growth. All of the Frankia genomes contained genes that encoded for products associated with the biosynthesis of auxins [indole-3-glycerol phosphate synthases, anthranilate phosphoribosyltransferases (trpD), anthranilate synthases, and aminases (trpA and B)], cytokinins (11 well-conserved genes within the predicted biosynthetic gene cluster), siderophores, and nitrogenases (nif operon except for atypical Frankia) as well as genes that modulate the effects of biotic and abiotic environmental stress (e.g., alkyl hydroperoxide reductases, aquaporin Z, heat shock proteins). In contrast, other genes were associated with strains assigned to one or more of four host-specific clusters. The genes encoding for phosphate solubilization (e.g., low-affinity inorganic phosphate transporters) and lytic enzymes (e.g., cellulases) were found in Frankia cluster 1 genomes, while other genes were found only in cluster 3 genomes (e.g., alkaline phosphatases, extracellular endoglucanases, pectate lyases) or cluster 4 and subcluster 1c genomes (e.g., NAD(P) transhydrogenase genes). Genes encoding for chitinases were found only in the genomes of the type strains of Frankia casuarinae, F. inefficax, F. irregularis, and F. saprophytica. In short, these in silico genome analyses provide an insight into the PGP abilities of Frankia strains of known taxonomic provenance. This is the first study designed to establish the underlying genetic basis of cytokinin production in Frankia strains. Also, the discovery of additional genes in the biosynthetic gene cluster involved in cytokinin production opens up the prospect that Frankia may have novel molecular mechanisms for cytokinin biosynthesis.
Collapse
Affiliation(s)
- Imen Nouioui
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Carlos Cortés-albayay
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lorena Carro
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
| | - Jean Franco Castro
- The Chilean Collection of Microbial Genetic Resources (CChRGM), Instituto de Investigaciones Agropecuarias (INIA) – Quilamapu, Chillán, Chile
| | - Maher Gtari
- Institut National des Sciences Appliquées et de Technologie, Université de Carthage Centre Urbain Nord, Tunis, Tunisia
| | - Faten Ghodhbane-Gtari
- Institut National des Sciences Appliquées et de Technologie, Université de Carthage Centre Urbain Nord, Tunis, Tunisia
- Laboratoire Microorganismes et Biomolécules Actives, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Louis S. Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
18
|
Middha S, Prashanth Kumar HP, Panda P, Karunakar P, Shiksha K, Singh L, Ramesh N, Usha T. Potential Cyclooxygenase (COX-2) enzyme inhibitors from Myrica nagi-from in-silico to in-vitro investigation. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_56_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Gtari M, Benson DR, Nouioui I, Dawson JO, Ghodhbane-Gtari F. 19th International Meeting on Frankia and Actinorhizal Plants. Antonie van Leeuwenhoek 2018; 112:1-4. [PMID: 30460470 DOI: 10.1007/s10482-018-1202-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
Abstract
It has been 40 years since the first meeting dedicated to Frankia and actinorhizal plants, which was held at Petersham, Massachusetts (reported in Torrey and Tjepkema, 1979). Since then biennial meetings have been organised and held in different venues around the globe (Table 1). The most recent meeting, the "19th International Meeting on Frankia and Actinorhizal Plants", organised in Hammamet, Tunisia from 17th to 19th of March, 2018, gathered scientists from Algeria, Argentina, Belgium, China, Egypt, France, India, Portugal, Senegal, Sweden, UK, USA and Tunisia. The event was a stimulating opportunity for active researchers to share many advances since the previous meeting held in Montpellier, France (Franche et al. 2016) and to discuss new perspectives in this research field.
Collapse
|
20
|
Cissoko M, Hocher V, Gherbi H, Gully D, Carré-Mlouka A, Sane S, Pignoly S, Champion A, Ngom M, Pujic P, Fournier P, Gtari M, Swanson E, Pesce C, Tisa LS, Sy MO, Svistoonoff S. Actinorhizal Signaling Molecules: Frankia Root Hair Deforming Factor Shares Properties With NIN Inducing Factor. FRONTIERS IN PLANT SCIENCE 2018; 9:1494. [PMID: 30405656 PMCID: PMC6201211 DOI: 10.3389/fpls.2018.01494] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/25/2018] [Indexed: 05/22/2023]
Abstract
Actinorhizal plants are able to establish a symbiotic relationship with Frankia bacteria leading to the formation of root nodules. The symbiotic interaction starts with the exchange of symbiotic signals in the soil between the plant and the bacteria. This molecular dialog involves signaling molecules that are responsible for the specific recognition of the plant host and its endosymbiont. Here we studied two factors potentially involved in signaling between Frankia casuarinae and its actinorhizal host Casuarina glauca: (1) the Root Hair Deforming Factor (CgRHDF) detected using a test based on the characteristic deformation of C. glauca root hairs inoculated with F. casuarinae and (2) a NIN activating factor (CgNINA) which is able to activate the expression of CgNIN, a symbiotic gene expressed during preinfection stages of root hair development. We showed that CgRHDF and CgNINA corresponded to small thermoresistant molecules. Both factors were also hydrophilic and resistant to a chitinase digestion indicating structural differences from rhizobial Nod factors (NFs) or mycorrhizal Myc-LCOs. We also investigated the presence of CgNINA and CgRHDF in 16 Frankia strains representative of Frankia diversity. High levels of root hair deformation (RHD) and activation of ProCgNIN were detected for Casuarina-infective strains from clade Ic and closely related strains from clade Ia unable to nodulate C. glauca. Lower levels were present for distantly related strains belonging to clade III. No CgRHDF or CgNINA could be detected for Frankia coriariae (Clade II) or for uninfective strains from clade IV.
Collapse
Affiliation(s)
- Maimouna Cissoko
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés Aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD, Université Montpellier/SupAgro, Montpellier, France
| | - Valérie Hocher
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD, Université Montpellier/SupAgro, Montpellier, France
| | - Hassen Gherbi
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD, Université Montpellier/SupAgro, Montpellier, France
| | - Djamel Gully
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD, Université Montpellier/SupAgro, Montpellier, France
| | - Alyssa Carré-Mlouka
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD, Université Montpellier/SupAgro, Montpellier, France
- UMR 7245, Molécules de Communication et Adaptation des Microorganismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Seyni Sane
- Laboratoire de Botanique et de Biodiversité Végétale, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Sarah Pignoly
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés Aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD, Université Montpellier/SupAgro, Montpellier, France
| | - Antony Champion
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés Aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Senegal
- UMR Diversité Adaptation et Développement des Plantes (DIADE), Institut de Recherche pour le Développement, Montpellier, France
| | - Mariama Ngom
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés Aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Senegal
| | - Petar Pujic
- Ecologie Microbienne, UMR 5557 CNRS, Université Lyon 1, Villeurbanne, France
| | - Pascale Fournier
- Ecologie Microbienne, UMR 5557 CNRS, Université Lyon 1, Villeurbanne, France
| | - Maher Gtari
- Institut National des Sciences Appliquées et de Technologie, Université Carthage, Tunis, Tunisia
| | - Erik Swanson
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Céline Pesce
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Louis S. Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Mame Oureye Sy
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Sergio Svistoonoff
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés Aux Stress Environnementaux, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement/INRA/CIRAD, Université Montpellier/SupAgro, Montpellier, France
| |
Collapse
|
21
|
Hocher V, Ngom M, Carré-Mlouka A, Tisseyre P, Gherbi H, Svistoonoff S. Signalling in actinorhizal root nodule symbioses. Antonie van Leeuwenhoek 2018; 112:23-29. [PMID: 30306463 DOI: 10.1007/s10482-018-1182-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/06/2018] [Indexed: 11/29/2022]
Abstract
Plants able to establish a nitrogen-fixing root nodule symbiosis with the actinobacterium Frankia are called actinorhizal. These interactions lead to the formation of new root organs, called actinorhizal nodules, where the bacteria are hosted intracellularly and fix atmospheric nitrogen thus providing the plant with an almost unlimited source of nitrogen for its nutrition. Like other symbiotic interactions, actinorhizal nodulation involves elaborate signalling between both partners of the symbiosis, leading to specific recognition between the plant and its compatible microbial partner, its accommodation inside plant cells and the development of functional root nodules. Actinorhizal nodulation shares many features with rhizobial nodulation but our knowledge on the molecular mechanisms involved in actinorhizal nodulation remains very scarce. However recent technical achievements for several actinorhizal species are allowing major discoveries in this field. In this review, we provide an outline on signalling molecules involved at different stages of actinorhizal nodule formation and the corresponding signalling pathways and gene networks.
Collapse
Affiliation(s)
- Valérie Hocher
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France
| | - Mariama Ngom
- LCM, IRD/ISRA, UCAD, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal.,LMI LAPSE, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal
| | - Alyssa Carré-Mlouka
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France.,MCAM, UMR 7245 CNRS/MNHN, Sorbonne Universités, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Pierre Tisseyre
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France
| | - Hassen Gherbi
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France
| | - Sergio Svistoonoff
- LSTM, UMR 040 IRD/INRA/CIRAD, Université Montpellier/Supagro, TA A-82/J, Campus International de Baillarguet, 34398, Montpellier CDX 5, France. .,LCM, IRD/ISRA, UCAD, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal. .,LMI LAPSE, Centre de Recherche de Bel Air, BP 1386, Dakar, Senegal.
| |
Collapse
|
22
|
Contrasted evolutionary constraints on carbohydrate active enzymes (CAZymes) in selected Frankia strains. Antonie van Leeuwenhoek 2018; 112:115-125. [PMID: 30291576 DOI: 10.1007/s10482-018-1173-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/29/2018] [Indexed: 10/28/2022]
Abstract
Carbohydrate active enzymes (CAZymes) are capable of breaking complex polysaccharides into simpler form. In plant-host-associated microorganisms CAZymes are known to be involved in plant cell wall degradation. However, the biology and evolution of Frankia CAZymes are largely unknown. In the present study, we took a genomic approach to evaluate the presence and putative roles of CAZymes in Frankia. The CAZymes were found to be potentially highly expressed (PHX) proteins and contained more aromatic amino acids, which increased their biosynthetic energy cost. These energy rich amino acids were present in the active sites of CAZymes aiding in their carbohydrate binding capacity. Phylogenetic and evolutionary analyses showed that, in Frankia strains with the capacity to nodulate host plants, CAZymes were evolving slower than the other PHX genes, whereas similar genes from non-nodulating (or ineffectively nodulating) Frankia strains showed little variation in their evolutionary constraints compared to other PHX genes. Thus, the present study revealed the persistence of a strong purifying selection on CAZymes of Frankia indicating their crucial role.
Collapse
|
23
|
Gtari M, Nouioui I, Sarkar I, Ghodhbane-Gtari F, Tisa LS, Sen A, Klenk HP. An update on the taxonomy of the genus Frankia Brunchorst, 1886, 174 AL. Antonie van Leeuwenhoek 2018; 112:5-21. [PMID: 30232679 DOI: 10.1007/s10482-018-1165-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022]
Abstract
Since the recognition of the name Frankia in the Approved Lists of bacterial names (1980), few amendments have been given to the genus description. Successive editions of Bergey's Manual of Systematics of Archaea and Bacteria have broadly conflicting suprageneric treatments of the genus without any advances for subgeneric classification. This review focuses on recent results from taxongenomics and phenoarray approaches to the positioning and the structuring of the genus Frankia. Based on phylogenomic analyses, Frankia should be considered the single member of the family Frankiaceae within the monophyletic order, Frankiales. A polyphasic strategy incorporating genome to genome data and omniLog® phenoarrays, together with classical approaches, has allowed the designation and an amended description of a type strain of the type species Frankia alni, and the recognition of at least 10 novel species covering symbiotic and non symbiotic taxa within the genus. Genome to phenome data will be shortly incorporated in the scheme for proposing novel species including those recalcitrant to isolation in axenic culture.
Collapse
Affiliation(s)
- Maher Gtari
- Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia.
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Indrani Sarkar
- NBU Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri, 734013, India
| | - Faten Ghodhbane-Gtari
- Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia.,Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisia
| | - Louis S Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH, 03824-2617, USA
| | - Arnab Sen
- NBU Bioinformatics Facility, Department of Botany, University of North Bengal, Siliguri, 734013, India
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
24
|
Kucho KI, Tobita H, Ikebe M, Shibata M, Imaya A, Kabeya D, Saitoh T, Okamoto T, Ono K, Morisada K. Frankia communities at revegetating sites in Mt. Ontake, Japan. Antonie van Leeuwenhoek 2018; 112:91-99. [PMID: 30155663 DOI: 10.1007/s10482-018-1151-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/25/2018] [Indexed: 11/24/2022]
Abstract
In 1984 at Mt. Ontake in Japan, an earthquake caused a devastating landslide, and as a result, the vegetation on the south slope of the mountain was completely eliminated. In higher elevation (2000 m) areas, revegetation has not yet been completed even 30 years after the landslide. Revegetation progress throughout the area was heterogeneous. In the partially revegetated areas, actinorhizal plant species such as Alnus maximowiczii and Alnus matsumurae have been found. In the present study, we investigated the Frankia communities in the higher-elevation area using sequence analysis of the amplified nifH (dinitrogenase reductase) gene from nodule and soil samples collected in the disturbed region, undisturbed forest, and in the boundary between the disturbed region and the undisturbed forest. Phylogenetic analysis of partial nifH sequences revealed the presence of six clusters, each of which consisted of highly similar (> 99%) sequences. Four clusters showed significant sequence similarity to Frankia (three Alnus- and a Casuarina-infecting strains). Diversity in the Frankia community was relatively low-only one or two clusters were detected in a site. At most of the sampling sites, a dominant cluster in a nodule coincided with that in rhizosphere soil, indicating that community structure in the rhizosphere is a primary factor that determines occupancy in a nodule. No significant difference in community structure was observed between plant species. Diversity in the Frankia community varied depending on revegetation progress. Cluster A, which was the most dominant in the disturbed region, was likely to have invaded from undisturbed forest.
Collapse
Affiliation(s)
- Ken-Ichi Kucho
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan.
| | - Hiroyuki Tobita
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, 305-8687, Japan
| | - Mari Ikebe
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan
| | - Mitsue Shibata
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, 305-8687, Japan
| | - Akihiro Imaya
- Forestry Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Daisuke Kabeya
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, 305-8687, Japan
| | - Tomoyuki Saitoh
- Tohoku Research Center, Forestry and Forest Products Research Institute, 2-25 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| | - Toru Okamoto
- Kansai Research Center, Forestry and Forest Products Research Institute, 68 Nagaikyutaroh, Momoyama, Fushimi, Kyoto, 612-0855, Japan
| | - Kenji Ono
- Tohoku Research Center, Forestry and Forest Products Research Institute, 2-25 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| | - Kazuhito Morisada
- Department of Forest Soil, Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, 305-8687, Japan
| |
Collapse
|
25
|
Draft genome sequence of the symbiotic Frankia sp. strain BMG5.30 isolated from root nodules of Coriaria myrtifolia in Tunisia. Antonie van Leeuwenhoek 2018; 112:67-74. [PMID: 30069723 DOI: 10.1007/s10482-018-1138-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/27/2018] [Indexed: 12/28/2022]
Abstract
Frankia sp. strain BMG5.30 was isolated from root nodules of a Coriaria myrtifolia seedling on soil collected in Tunisia and represents the second cluster 2 isolate. Frankia sp. strain BMG5.30 was able to re-infect C. myrtifolia generating root nodules. Here, we report its 5.8-Mbp draft genome sequence with a G + C content of 70.03% and 4509 candidate protein-encoding genes.
Collapse
|
26
|
Nouioui I, Ghodhbane-Gtari F, Jando M, Tisa LS, Klenk HP, Gtari M. Frankia torreyi sp. nov., the first actinobacterium of the genus Frankia Brunchorst 1886, 174 AL isolated in axenic culture. Antonie van Leeuwenhoek 2018; 112:57-65. [PMID: 30030730 DOI: 10.1007/s10482-018-1131-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/12/2018] [Indexed: 11/30/2022]
Abstract
Strain CpI1T was, in 1978, the first isolate of the genus Frankia to be obtained from Comptonia peregrina root nodules. In this study, a polyphasic approach was performed to identify the taxonomic position of strain CpI1T among the members of the genus Frankia. The strain contains meso-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, mannose, rhamnose, ribose and xylose as cell wall sugars. The polar lipids were found to consist of phosphatidylinositol, diphosphatidylglycerol, glycophospholipids, phosphatidylglycerol, an aminophospholipid and unidentified phospholipids and lipids. The predominant menaquinone was identified as MK-9 (H8), while the major fatty acid are iso-C16:0 and C17:1ω 8c. The 16S rRNA gene sequence identity varies from 97.4 to 99.6% with the type strains of currently described Frankia species. Phylogenetic analyses based on 16S rRNA gene sequences and multi-locus sequence analysis (MLSA) using atp1, ftsZ, dnaK, gyrA and secA gene sequences showed that strain CpI1T is closely related to Frankia alni ACN14aT. The genome size of strain CpI1T is 7.6 Mb with a digital DNA G+C content of 72.4%. Digital DNA:DNA hybridization (values between strain CpI1T and its close phylogenetic relative F. alni ACN14aT was 44.1%, well below the threshold of 70% for distinguishing between bacterial genomic species. Based on the phenotypic, phylogenetic and genomic data, strain CpI1T (= DSM44263T = CECT9035T) warrants classification as the type strain of a novel species, for which the name Frankia torreyi sp. nov. is proposed.
Collapse
Affiliation(s)
- Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST), 2092, Tunis, Tunisia.,Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia
| | - Marlen Jando
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Brunswick, Germany
| | - Louis S Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Maher Gtari
- Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia.
| |
Collapse
|
27
|
Nouioui I, Ghodhbane-Gtari F, Rhode M, Sangal V, Klenk HP, Gtari M. Frankia irregularis sp. nov., an actinobacterium unable to nodulate its original host, Casuarina equisetifolia, but effectively nodulates members of the actinorhizal Rhamnales. Int J Syst Evol Microbiol 2018; 68:2883-2914. [PMID: 30010524 DOI: 10.1099/ijsem.0.002914] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A red pigmented actinobacterium designated G2T, forming extremely branched vegetative hyphae, vesicles and mutilocular sporangia, was isolated from Casuarina equisetifolia nodules. The strain failed to nodulate its original host plant but effectively nodulated members of actinorhizal Rhamnales. The taxonomic position of G2T was determined using a polyphasic approach. The peptidoglycan of the strain contained meso-diaminopimelic acid as diagnostic diamino acid, galactose, glucose, mannose, rhamnose, ribose and xylose. The polar lipid pattern consisted of phosphatidylinositol (PI), diphosphatidylglycerol (DPG), glycophospholipids (GPL1-2), phosphatidylglycerol (PG), aminophospholipid (APL) and unknown lipids (L). The predominant menaquinones were MK-9 (H4) and MK-9 (H6) while the major fatty acids were iso-C16 : 0, C17 : 1ω8c and C15 : 0. The size of the genome of G2T was 9.5 Mb and digital DNA G+C content was 70.9 %. The 16S rRNA gene showed 97.4-99.5 % sequence identity with the type strains of species of the genus Frankia. Digital DNA -DNA hybridisation (dDDH) values between G2T and its nearest phylogenetic neighbours Frankia elaeagniand Frankia discariaewere below the threshold of 70 %. On the basis of these results, strain G2T (=DSM 45899T=CECT 9038T) is proposed to represent the type strain of a novel species Frankia irregularis sp. nov.
Collapse
Affiliation(s)
- Imen Nouioui
- 1School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Faten Ghodhbane-Gtari
- 2Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 Tunis, Tunisia
| | - Manfred Rhode
- 3Central Facility for Microscopy, HZI-Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Vartul Sangal
- 4Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Hans-Peter Klenk
- 1School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne, NE1 7RU, UK
| | - Maher Gtari
- 5Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080 Tunis Cedex, Tunisia
| |
Collapse
|
28
|
Pozzi AC, Bautista-Guerrero HH, Abby SS, Herrera-Belaroussi A, Abrouk D, Normand P, Menu F, Fernandez MP. Robust Frankia phylogeny, species delineation and intraspecies diversity based on Multi-Locus Sequence Analysis (MLSA) and Single-Locus Strain Typing (SLST) adapted to a large sample size. Syst Appl Microbiol 2018; 41:311-323. [DOI: 10.1016/j.syapm.2018.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 10/17/2022]
|
29
|
Ktari A, Nouioui I, Furnholm T, Swanson E, Ghodhbane-Gtari F, Tisa LS, Gtari M. Permanent draft genome sequence of Frankia sp. NRRL B-16219 reveals the presence of canonical nod genes, which are highly homologous to those detected in Candidatus Frankia Dg1 genome. Stand Genomic Sci 2017; 12:51. [PMID: 28878862 PMCID: PMC5584510 DOI: 10.1186/s40793-017-0261-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/22/2017] [Indexed: 01/24/2023] Open
Abstract
Frankia sp. NRRL B-16219 was directly isolated from a soil sample obtained from the rhizosphere of Ceanothus jepsonii growing in the USA. Its host plant range includes members of Elaeagnaceae species. Phylogenetically, strain NRRL B-16219 is closely related to "Frankia discariae" with a 16S rRNA gene similarity of 99.78%. Because of the lack of genetic tools for Frankia, our understanding of the bacterial signals involved during the plant infection process and the development of actinorhizal root nodules is very limited. Since the first three Frankia genomes were sequenced, additional genome sequences covering more diverse strains have helped provide insight into the depth of the pangenome and attempts to identify bacterial signaling molecules like the rhizobial canonical nod genes. The genome sequence of Frankia sp. strain NRRL B-16219 was generated and assembled into 289 contigs containing 8,032,739 bp with 71.7% GC content. Annotation of the genome identified 6211 protein-coding genes, 561 pseudogenes, 1758 hypothetical proteins and 53 RNA genes including 4 rRNA genes. The NRRL B-16219 draft genome contained genes homologous to the rhizobial common nodulation genes clustered in two areas. The first cluster contains nodACIJH genes whereas the second has nodAB and nodH genes in the upstream region. Phylogenetic analysis shows that Frankia nod genes are more deeply rooted than their sister groups from rhizobia. PCR-sequencing suggested the widespread occurrence of highly homologous nodA and nodB genes in microsymbionts of field collected Ceanothus americanus.
Collapse
Affiliation(s)
- Amir Ktari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Imen Nouioui
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Teal Furnholm
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 289 Rudman Hall, 46 college Road, Durham, NH 03824-2617 USA
| | - Erik Swanson
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 289 Rudman Hall, 46 college Road, Durham, NH 03824-2617 USA
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| | - Louis S Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 289 Rudman Hall, 46 college Road, Durham, NH 03824-2617 USA
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) & Université de Carthage (INSAT), 2092 Tunis, Tunisia
| |
Collapse
|
30
|
Oshone R, Ngom M, Chu F, Mansour S, Sy MO, Champion A, Tisa LS. Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees. BMC Genomics 2017; 18:633. [PMID: 28821232 PMCID: PMC5563000 DOI: 10.1186/s12864-017-4056-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/11/2017] [Indexed: 11/10/2022] Open
Abstract
Background Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia. Identification and molecular characterization of salt-tolerant Casuarina species and associated Frankia is imperative for the successful utilization of Casuarina trees in saline soil reclamation efforts. In this study, salt-tolerant and salt-sensitive Casuarina associated Frankia strains were identified and comparative genomics, transcriptome profiling, and proteomics were employed to elucidate the molecular mechanisms of salt and osmotic stress tolerance. Results Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM NaCl were identified. The remaining isolates had intermediate levels of salt tolerance with MIC values ranging from 650 mM to 750 mM. Comparative genomic analysis showed that all of the Frankia isolates from Casuarina belonged to the same species (Frankia casuarinae). Pangenome analysis revealed a high abundance of singletons among all Casuarina isolates. The two salt-tolerant strains contained 153 shared single copy genes (most of which code for hypothetical proteins) that were not found in the salt-sensitive(CcI3) and moderately salt-tolerant (CeD) strains. RNA-seq analysis of one of the two salt-tolerant strains (Frankia sp. strain CcI6) revealed hundreds of genes differentially expressed under salt and/or osmotic stress. Among the 153 genes, 7 and 7 were responsive to salt and osmotic stress, respectively. Proteomic profiling confirmed the transcriptome results and identified 19 and 8 salt and/or osmotic stress-responsive proteins in the salt-tolerant (CcI6) and the salt-sensitive (CcI3) strains, respectively. Conclusion Genetic differences between salt-tolerant and salt-sensitive Frankia strains isolated from Casuarina were identified. Transcriptome and proteome profiling of a salt-tolerant strain was used to determine molecular differences correlated with differential salt-tolerance and several candidate genes were identified. Mechanisms involving transcriptional and translational regulation, cell envelop remodeling, and previously uncharacterized proteins appear to be important for salt tolerance. Physiological and mutational analyses will further shed light on the molecular mechanism of salt tolerance in Casuarina associated Frankia isolates. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4056-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rediet Oshone
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd, Durham, NH, 03824-2617, USA
| | - Mariama Ngom
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-Air, Dakar, Sénégal.,Laboratoire Campus de Biotechnologies Végétales, Département de Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal.,Laboratoire Commun de Microbiologie Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta Diop, Centre de Recherche de Bel-Air, Dakar, Sénégal
| | - Feixia Chu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd, Durham, NH, 03824-2617, USA
| | - Samira Mansour
- Faculty of Science, Suez Canal University, Ismalia, Egypt
| | - Mame Ourèye Sy
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-Air, Dakar, Sénégal.,Laboratoire Campus de Biotechnologies Végétales, Département de Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Antony Champion
- Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel-Air, Dakar, Sénégal.,UMR DIADE, Institut de Recherche pour le Développement, Montpellier, France
| | - Louis S Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd, Durham, NH, 03824-2617, USA.
| |
Collapse
|
31
|
Permanent Draft Genome Sequence for Frankia sp. Strain Cc1.17, a Nitrogen-Fixing Actinobacterium Isolated from Root Nodules of Colletia cruciata. GENOME ANNOUNCEMENTS 2017; 5:5/24/e00530-17. [PMID: 28619804 PMCID: PMC5473273 DOI: 10.1128/genomea.00530-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Frankia sp. strain Cc1.17 is a member of the Frankia lineage 3, the organisms of which are able to reinfect plants of the Eleagnaceae, Rhamnaceae, and Myricaceae families and the genera Gynmnostoma and Alnus. Here, we report the 8.4-Mbp draft genome sequence, with a G+C content of 72.14% and 6,721 candidate protein-coding genes.
Collapse
|
32
|
Carro L, Nouioui I. Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol 2017; 3:383-412. [PMID: 31294168 PMCID: PMC6604993 DOI: 10.3934/microbiol.2017.3.383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics.
Collapse
Affiliation(s)
- Lorena Carro
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Imen Nouioui
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
Ktari A, Gueddou A, Nouioui I, Miotello G, Sarkar I, Ghodhbane-Gtari F, Sen A, Armengaud J, Gtari M. Host Plant Compatibility Shapes the Proteogenome of Frankia coriariae. Front Microbiol 2017; 8:720. [PMID: 28512450 PMCID: PMC5411423 DOI: 10.3389/fmicb.2017.00720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/06/2017] [Indexed: 01/24/2023] Open
Abstract
Molecular signaling networks in the actinorhizal rhizosphere select host-compatible Frankia strains, trigger the infection process and eventually the genesis of nitrogen-fixing nodules. The molecular triggers involved remain difficult to ascertain. Root exudates (RE) are highly dynamic substrates that play key roles in establishing the rhizosphere microbiome. RE are known to induce the secretion by rhizobia of Nod factors, polysaccharides, and other proteins in the case of legume symbiosis. Next-generation proteomic approach was here used to decipher the key bacterial signals matching the first-step recognition of host plant stimuli upon treatment of Frankia coriariae strain BMG5.1 with RE derived from compatible (Coriaria myrtifolia), incompatible (Alnus glutinosa), and non-actinorhizal (Cucumis melo) host plants. The Frankia proteome dynamics were mainly driven by host compatibility. Both metabolism and signal transduction were the dominant activities for BMG5.1 under the different RE conditions tested. A second set of proteins that were solely induced by C. myrtifolia RE and were mainly linked to cell wall remodeling, signal transduction and host signal processing activities. These proteins may footprint early steps in receptive recognition of host stimuli before subsequent events of symbiotic recruitment.
Collapse
Affiliation(s)
- Amir Ktari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) and Université de Carthage (INSAT)Tunis, Tunisia
| | - Abdellatif Gueddou
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) and Université de Carthage (INSAT)Tunis, Tunisia
| | - Imen Nouioui
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) and Université de Carthage (INSAT)Tunis, Tunisia
| | - Guylaine Miotello
- CEA, DRF, Joliot, Lab Innovative Technologies for Detection and DiagnosticBagnols-sur-Cèze, France
| | - Indrani Sarkar
- Department of Botany, NBU Bioinformatics Facility, University of North BengalSiliguri, India
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) and Université de Carthage (INSAT)Tunis, Tunisia
| | - Arnab Sen
- Department of Botany, NBU Bioinformatics Facility, University of North BengalSiliguri, India
| | - Jean Armengaud
- CEA, DRF, Joliot, Lab Innovative Technologies for Detection and DiagnosticBagnols-sur-Cèze, France
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) and Université de Carthage (INSAT)Tunis, Tunisia
| |
Collapse
|
34
|
Permanent Draft Genome Sequences of Three
Frankia
sp. Strains That Are Atypical, Noninfective, Ineffective Isolates. GENOME ANNOUNCEMENTS 2017; 5:5/15/e00174-17. [PMID: 28408685 PMCID: PMC5391423 DOI: 10.1128/genomea.00174-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Here, we present draft genome sequences for three atypical Frankia strains (lineage 4) that were isolated from root nodules but are unable to reinfect actinorhizal plants. The genome sizes of Frankia sp. strains EUN1h, BMG5.36, and NRRL B16386 were 9.91, 11.20, and 9.43 Mbp, respectively.
Collapse
|
35
|
Furnholm T, Rehan M, Wishart J, Tisa LS. Pb2+ tolerance by Frankia sp. strain EAN1pec involves surface-binding. MICROBIOLOGY-SGM 2017; 163:472-487. [PMID: 28141503 DOI: 10.1099/mic.0.000439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several Frankia strains have been shown to be lead-resistant. The mechanism of lead resistance was investigated for Frankia sp. strain EAN1pec. Analysis of the cultures by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX) and Fourier transforming infrared spectroscopy (FTIR) demonstrated that Frankia sp. strain EAN1pec undergoes surface modifications and binds high quantities of Pb+2. Both labelled and unlabelled shotgun proteomics approaches were used to determine changes in Frankia sp. strain EAN1pec protein expression in response to lead and zinc. Pb2+ specifically induced changes in exopolysaccharides, the stringent response, and the phosphate (pho) regulon. Two metal transporters (a Cu2+-ATPase and cation diffusion facilitator), as well as several hypothetical transporters, were also upregulated and may be involved in metal export. The exported Pb2+ may be precipitated at the cell surface by an upregulated polyphosphate kinase, undecaprenyl diphosphate synthase and inorganic diphosphatase. A variety of metal chaperones for ensuring correct cofactor placement were also upregulated with both Pb+2 and Zn+2 stress. Thus, this Pb+2 resistance mechanism is similar to other characterized systems. The cumulative interplay of these many mechanisms may explain the extraordinary resilience of Frankia sp. strain EAN1pec to Pb+2. A potential transcription factor (DUF156) binding site was identified in association with several proteins identified as upregulated with heavy metals. This site was also discovered, for the first time, in thousands of other organisms across two kingdoms.
Collapse
Affiliation(s)
- Teal Furnholm
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Medhat Rehan
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Department of Genetics, College of Agriculture, Kafrelsheikh University, Egypt.,Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Saudi Arabia
| | - Jessica Wishart
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Louis S Tisa
- Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
36
|
Frankia inefficax sp. nov., an actinobacterial endophyte inducing ineffective, non nitrogen-fixing, root nodules on its actinorhizal host plants. Antonie van Leeuwenhoek 2016; 110:313-320. [PMID: 27830471 DOI: 10.1007/s10482-016-0801-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Strain EuI1cT is the first actinobacterial endophyte isolated from Elaeagnus umbellata that was shown to be infective on members of Elaeagnaceae and Morella but lacking the ability to form effective root nodules on its hosts. The strain can be easily distinguished from strains of other Frankia species based on its inability to produce vesicles, the specialized thick-walled structures where nitrogen fixation occurs. Chemotaxonomically, strain EuI1cT contains phosphatidylinositol, diphosphatidylglycerol, two glycophospholipids and phosphatidylglycerol as phospholipids. The whole cell sugars were composed of glucose, galactose, mannose, ribose, rhamnose and fucose as diagnostic sugars of the species. Major fatty acids were iso-C16:0, C17:1 ω8c and C15:0 and C17:0 and the predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). Analysis of the 16S rRNA gene sequence of strain EuI1cT showed 97, 97.4 and 97.9% identity with Frankia elaeagni DSM 46783T, Frankia casuarinae DSM 45818T and Frankia alni DSM 45986T, respectively. Digital DNA:DNA hybridizations with type strains of the three Frankia species with validly/effectively published names are significantly below 70%. These results warrant distinction of EuI1cT (= DSM 45817T = CECT 9037T) as the type strain of a novel species designated Frankia inefficax sp. nov.
Collapse
|
37
|
D'Angelo T, Oshone R, Abebe-Akele F, Simpson S, Morris K, Thomas WK, Tisa LS. Permanent Draft Genome Sequence of Frankia sp. Strain BR, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Casuarina equisetifolia. GENOME ANNOUNCEMENTS 2016; 4:e01000-16. [PMID: 27635010 PMCID: PMC5026450 DOI: 10.1128/genomea.01000-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/19/2022]
Abstract
Frankia sp. strain BR is a member of Frankia lineage Ic and is able to reinfect plants of the Casuarinaceae family. Here, we report a 5.2-Mbp draft genome sequence with a G+C content of 70.0% and 4,777 candidate protein-encoding genes.
Collapse
Affiliation(s)
| | - Rediet Oshone
- University of New Hampshire, Durham, New Hampshire, USA
| | | | | | | | | | - Louis S Tisa
- University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
38
|
An update on research on Frankia and actinorhizal plants on the occasion of the 18th meeting of the Frankia-actinorhizal plants symbiosis. Symbiosis 2016. [DOI: 10.1007/s13199-016-0431-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|