1
|
Lang S, Dyballa M, Traa Y, Estes D, Klemm E, Hunger M. Direct Proof of Volatile and Adsorbed Hydrocarbons on Solid Catalysts by Complementary NMR Methods. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202000128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Swen Lang
- University of Stuttgart Institute of Chemical Technology Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Michael Dyballa
- University of Stuttgart Institute of Chemical Technology Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Yvonne Traa
- University of Stuttgart Institute of Chemical Technology Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Deven Estes
- University of Stuttgart Institute of Chemical Technology Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Elias Klemm
- University of Stuttgart Institute of Chemical Technology Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Michael Hunger
- University of Stuttgart Institute of Chemical Technology Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
2
|
Fu Y, Guan H, Yin J, Kong X. Probing molecular motions in metal-organic frameworks with solid-state NMR. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213563] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
A brief introduction to the basics of NMR spectroscopy and selected examples of its applications to materials characterization. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractNuclear magnetic resonance (NMR) spectroscopy is an analytical technique that gives information on the local magnetic field around atomic nuclei. Since the local magnetic field of the nucleus is directly influenced by such features of the molecular structure as constitution, configuration, conformation, intermolecular interactions, etc., NMR can provide exhaustive information on the chemical structure, which is unrivaled by any other analytical method. Starting from the 1950s, NMR spectroscopy first revolutionized organic chemistry and became an indispensable tool for the structure elucidation of small, soluble molecules. As the technique evolved, NMR rapidly conquered other disciplines of chemical sciences. When the analysis of macromolecules and solids also became feasible, the technique turned into a staple in materials characterization, too. All aspects of NMR spectroscopy, including technical and technological development, as well as its applications in natural sciences, have been growing exponentially since its birth. Hence, it would be impossible to cover, or even touch on, all topics of importance related to this versatile analytical tool. In this tutorial, we aim to introduce the reader to the basic principles of NMR spectroscopy, instrumentation, historical development and currently available brands, practical cost aspects, sample preparation, and spectrum interpretation. We show a number of advanced techniques relevant to materials characterization. Through a limited number of examples from different fields of materials science, we illustrate the immense scope of the technique in the analysis of materials. Beyond our inherently limited introduction, an ample list of references should help the reader to navigate further in the field of NMR spectroscopy.
Collapse
|
4
|
Moran RF, Dawson DM, Ashbrook SE. Exploiting NMR spectroscopy for the study of disorder in solids. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1256604] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Robert F. Moran
- School of Chemistry, EaStCHEM and St Andrews Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Daniel M. Dawson
- School of Chemistry, EaStCHEM and St Andrews Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Sharon E. Ashbrook
- School of Chemistry, EaStCHEM and St Andrews Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| |
Collapse
|