1
|
Jaramillo-Fierro X, Alvarado H, Montesdeoca F, Valarezo E. Faujasite-Type Zeolite Obtained from Ecuadorian Clay as a Support of ZnTiO 3/TiO 2 NPs for Cyanide Removal in Aqueous Solutions. Int J Mol Sci 2023; 24:ijms24119281. [PMID: 37298234 DOI: 10.3390/ijms24119281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, zeolites prepared by the hydrothermal method from Ecuadorian clay were combined with the precursor clay and with the semiconductor ZnTiO3/TiO2 prepared by the sol-gel method to adsorb and photodegrade cyanide species from aqueous solutions. These compounds were characterized by X-ray powder diffraction, X-ray fluorescence, scanning electron microscopy, energy-dispersive X-rays, point of zero charge, and specific surface area. The adsorption characteristics of the compounds were measured using batch adsorption experiments as a function of pH, initial concentration, temperature, and contact time. The Langmuir isotherm model and the pseudo-second-order model fit the adsorption process better. The equilibrium state in the reaction systems at pH = 7 was reached around 130 and 60 min in the adsorption and photodegradation experiments, respectively. The maximum cyanide adsorption value (73.37 mg g-1) was obtained with the ZC compound (zeolite + clay), and the maximum cyanide photodegradation capacity (90.7%) under UV light was obtained with the TC compound (ZnTiO3/TiO2 + clay). Finally, the reuse of the compounds in five consecutive treatment cycles was determined. The results reflect that the compounds synthesized and adapted to the extruded form could potentially be used for the removal of cyanide from wastewater.
Collapse
Affiliation(s)
- Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Hipatia Alvarado
- Ingeniería Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Fernando Montesdeoca
- Ingeniería Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Eduardo Valarezo
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| |
Collapse
|
2
|
Umejuru EC, Mashifana T, Kandjou V, Amani-Beni M, Sadeghifar H, Fayazi M, Karimi-Maleh H, Sithole T. Application of zeolite based nanocomposites for wastewater remediation: Evaluating newer and environmentally benign approaches. ENVIRONMENTAL RESEARCH 2023; 231:116073. [PMID: 37164282 DOI: 10.1016/j.envres.2023.116073] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
The presence of heavy metal ions and emerging pollutants in water poses a great risk to various biological ecosystems as a result of their high toxicity. Consequently, devising efficient and environmentally friendly methods to decontaminate these waters is of high interest to many researchers around the world. Among the varied water treatment and desalination means, adsorption and photocatalysis have been widely employed. However, the discussion and analysis of the use of zeolite-based composites as adsorbents are somehow minimal. The porous aluminosilicates (zeolites) are excellent candidates in wastewater treatment owing to various mechanisms of pollutants removal that they possess. The purpose of this review is thus to provide a synopsis of the current developments in the fabrication and application of nanocomposites based on zeolite as adsorbents and photocatalysts for the extraction of heavy metals, dyes and emerging pollutants from wastewaters. The review goes on to look into the effect of weight ratio on photocatalyst, photodegradation pathways, and various factors that influence photocatalysis and adsorption.
Collapse
Affiliation(s)
- Emmanuel Christopher Umejuru
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Tebogo Mashifana
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Vepika Kandjou
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa; Department of Chemical Materials and Metallurgical Engineering (CMME), Faculty of Engineering and Technology (FET), Botswana International University of Science and Technology (BIUST), P/Bag 16, Palapye, Botswana
| | - Majid Amani-Beni
- School of Architecture, Southwest Jiaotong University, 611756, Chengdu, China
| | - Hasan Sadeghifar
- R&D Laboratory, Hollingsworth & Vose (H&V) Company, West Groton, MA, 01452, USA
| | - Mahsa Fayazi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Thandiwe Sithole
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa.
| |
Collapse
|
3
|
Zhang C, Sun G, Quan B, Shi X, Xiao N, Zhang Y, Tong J, Wang W, Tang Y, Xiao B, Zhang C. Preparation of Mn/Ti-modified zeolite and its performance for removing iron and manganese. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80581-80596. [PMID: 35718848 DOI: 10.1007/s11356-022-21309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Excessive iron and manganese presented in groundwater sources may cause harm to human health that needs to be solved urgently. This research aims to develop high-performance Mn/Ti-modified zeolites using sol-gel method and hydrothermal synthesis method to remove Fe2+ and Mn2+ simultaneously. The preparation parameters were optimized by response surface methodology, and the results confirmed that the optimal preparation conditions were as follows: mass ratio of MnO2-TiO2/zeolite = 1, hydrothermal temperature = 200°C, and calcination temperature = 500°C. The results of batch adsorption experiments showed that the best removal rate of Fe2+ and Mn2+ by modified zeolite materials which was prepared under the optimum conditions reached 96.8% and 94.4%, respectively, at which the saturated adsorption capacity was 2.80 mg/g and 1.86 mg/g. Through the adsorption kinetics, thermodynamics, internal diffusion, and isothermal adsorption analyses, it is confirmed that the adsorption process of Fe2+ and Mn2+ by the modified zeolite is mainly chemical adsorption. The results of the Weber-Morris internal diffusion model prove that internal diffusion is not the only step that controls the adsorption process. In addition, combined with the characterization of the composite-modified zeolite and the adsorption experimental study, it shows that there is an autocatalytic reaction in the adsorption process.
Collapse
Affiliation(s)
- Chunhui Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China.
| | - Guirong Sun
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Bingxu Quan
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Xuelu Shi
- Multidisciplinary Digital Publishing Institute, Beijing, 100088, People's Republic of China
| | - Nan Xiao
- Zhongguancun Summit Enviro-Protection Co., Ltd., Beijing, 100070, People's Republic of China
| | - Yizhen Zhang
- Zhongguancun Summit Enviro-Protection Co., Ltd., Beijing, 100070, People's Republic of China
| | - Jinghua Tong
- Zhongguancun Summit Enviro-Protection Co., Ltd., Beijing, 100070, People's Republic of China
| | - Wenqian Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Yuanhui Tang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Binhu Xiao
- China Coal Shaanxi Yulin Energy and Chemical Co., Ltd., Yulin, Shaanxi, 719000, People's Republic of China
| | - Chunyu Zhang
- China Coal Shaanxi Yulin Energy and Chemical Co., Ltd., Yulin, Shaanxi, 719000, People's Republic of China
| |
Collapse
|
4
|
Abstract
Hydrogen is considered one of the energy carriers of the future due to its high mass-based calorific value. Hydrogen combustion generates only water, and it can be used directly as a fuel for electricity/heat generation. Nowadays, about 95% of the hydrogen is produced via conversion of fossil fuels. One of the future challenges is to find processes based on a renewable source to produce hydrogen in a sustainable way. Bioethanol is a promising candidate, since it can be obtained from the fermentation of biomasses, and easily converted into hydrogen via steam catalytic reforming. The correct design of catalysts and catalytic supports plays a crucial role in the optimization of this reaction. The best results have to date been achieved by noble metals, but their high costs make them unsuitable for industrial application. Very satisfactory results have also been achieved by using nickel and cobalt as active metals. Furthermore, it has been found that the support physical and chemical properties strongly affect the catalytic performance. In this review, zeolitic materials used for the ethanol steam reforming reaction are overviewed. We discuss thermodynamics, reaction mechanisms and the role of active metal, as well as the main noble and non-noble active compounds involved in ethanol steam reforming reaction. Finally, an overview of the zeolitic supports reported in the literature that can be profitably used to produce hydrogen through ethanol steam reforming is presented.
Collapse
|
5
|
Rathi A, Barman S, Basu S, Arya RK. Post-fabrication structural changes and enhanced photodegradation activity of semiconductors@zeolite composites towards noxious contaminants. CHEMOSPHERE 2022; 288:132609. [PMID: 34687683 DOI: 10.1016/j.chemosphere.2021.132609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
This review article provides the recent progress in semiconductor-based zeolite photoactive materials for the application of noxious contaminants removal. The rapidly expanding industrialization and globalization cause serious threats to the environment or water bodies. The semiconductor@zeolite photocatalysts were implemented for water quality management/sustainment. The exclusive properties of zeolite material have been elaborated with their role in the photocatalysis process. The photoactive material's properties like single-atom catalysts (SACs), distribution of metal in the zeolite crystal were elaborated along with their role in catalytic reactions. Differently prepared semiconductor@zeolite composites such as TiO2@zeolite, binary and ternary composites, Fe/Ag/bismuth-modified/ZnO/ZnS/NiO/g-C3N4/core-shell/quantum dots modified zeolite composites, were systematically summarized. The research progress in morphologies, structural effect, degradation mechanism were recapitulated and tabulated form of % degradation with their optimal parameters such as catalyst dose, pollutant concentrations, pH, light source intensities were also provided. The significance of zeolite frameworks, the structural properties of semiconductor@zeolite photoactive materials to enhance the degradation efficiencies was explored. Analysis of the intermediate products of Norfloxacin, TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), TCDF (2,3,7,8-tetrachlorodibenzofuran), diclofenac contaminants were systematically represented and structurally identified by GC-MS/HPLC-MS techniques.
Collapse
Affiliation(s)
- Aanchal Rathi
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, India
| | - Sanghamitra Barman
- Department of Chemical Engineering, Thapar Institute of Engineering and Technology, India.
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, India.
| | - Raj Kumar Arya
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| |
Collapse
|
6
|
Gainanova AA, Domoroshchina EN, Kuz’micheva GM, Khramov EV, Chumakov RG, Gotovtsev PM, Pirutko LV, Zybinskiy AM, Yashina NV. New composites based on zeolites (H-Beta, H-ZSM-5) and nanosized titanium( iv) oxide (anatase and η-phase) doped by Ni, Ag, V with photocatalytic, adsorption and bactericidal properties. NEW J CHEM 2021. [DOI: 10.1039/d0nj04286b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first prepared nanocomposites with zeolites H-Beta, H-ZSM-5 and anatase and η-phases, doped by V, Ni, Ag, are multifunctional materials for water purification from harmful pollutants and pathogenic bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Larisa V. Pirutko
- Boreskov Institute of Catalysis
- Siberian Branch of the Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Andrey M. Zybinskiy
- N. M. Fedorovsky All-Russian Scientific Research Institute of Mineral Resources
- Moscow
- Russia
| | | |
Collapse
|
7
|
Fernández-Catalá J, Sánchez-Rubio M, Navlani-García M, Berenguer-Murcia Á, Cazorla-Amorós D. Synthesis of TiO 2/Nanozeolite Composites for Highly Efficient Photocatalytic Oxidation of Propene in the Gas Phase. ACS OMEGA 2020; 5:31323-31331. [PMID: 33324843 PMCID: PMC7726953 DOI: 10.1021/acsomega.0c04793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/13/2020] [Indexed: 05/28/2023]
Abstract
In this work, we reported the preparation of composites based on titania (TiO2) and Zeolite Socony Mobil-5 (ZSM-5) nanozeolite, following two approaches (i.e., incorporating the presynthesized zeolite in the synthesis medium of TiO2 and incorporating presynthesized TiO2 in the synthesis medium of ZSM-5). The materials synthesized were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectrometry analysis, and their photocatalytic activities were assessed in the oxidation of propene in the gas phase. It was observed that the synthesis methodology affects the final properties of the composite, which ultimately affected their photocatalytic performance in the studied application. It was found that the Nano-ZSM5/TiO2 composite was the most active among the investigated samples, which was attributed to the intimate contact between the two components of the composite, the preserved properties of the photocatalytic active phase in the final material, and the positive contribution of the nanozeolite by increasing the local concentration of propene.
Collapse
Affiliation(s)
- Javier Fernández-Catalá
- Materials Institute and Inorganic
Chemistry Department, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Miriam Sánchez-Rubio
- Materials Institute and Inorganic
Chemistry Department, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Miriam Navlani-García
- Materials Institute and Inorganic
Chemistry Department, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Ángel Berenguer-Murcia
- Materials Institute and Inorganic
Chemistry Department, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Diego Cazorla-Amorós
- Materials Institute and Inorganic
Chemistry Department, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
8
|
Investigation of Microstructure and Photocatalytic Performance of a Modified Zeolite Supported Nanocrystal TiO2 Composite. Catalysts 2019. [DOI: 10.3390/catal9060502] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A modified zeolite/TiO2 composite (MZTC) was prepared through a method of saturated infiltration and synthesis in situ. The crystalline phase, micromorphology, elementary composition, specific surface area, pore size distribution, chemical bond and band gap variation of the products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), BET specific surface area and pore size distribution analysis (BET), Fourier transform infrared spectroscopy (FTIR) and UV–vis diffuse reflectance spectroscopy (UV-vis DRS), respectively. The microscopic characterization results showed that TiO2 was homogeneously dispersed in the structure of zeolite at the nanoscale range, and a strong chemical bond was established between TiO2 and zeolite. The photocatalytic performance of MZTC was evaluated by studying the degradation rate of methylene blue (MB) dye in aqueous solution under UV-light irradiation. The results of the degradation experiment showed that the MB degradation rate of MZTC-2.5 was the highest, reaching 93.6%, which was 2.4 times higher than hydrolysis TiO2 powder (HTOP) containing the same mass of pure TiO2. The MB degradation rate of MZTC-2.5 still maintained 86.5% after five tests, suggesting the excellent recyclability of MZTC-2.5. The possible mechanism of MB degradation was also discussed.
Collapse
|
9
|
Domoroshchina E, Orekhov A, Chernyshev V, Kuz’micheva G, Kravchenko G, Klechkovskaya V, Pirutko L. Relationship between (micro)structure and functional (photocatalytic and adsorption) properties of anatase–mordenite nanocomposite. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03767-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|