1
|
Phan MV, Tran TKT, Pham QN, Do MH, Nguyen THN, Nguyen MT, Phan TT, To TXH. Controllable Synthesis of Hollow Silica Nanoparticles Using Layered Double Hydroxide Templates and Application for Thermal Insulation Coating. ACS OMEGA 2023; 8:31399-31409. [PMID: 37663482 PMCID: PMC10468985 DOI: 10.1021/acsomega.3c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
The innovative hollow silica nanoparticle (HSN) material possesses substantial potential for application in the insulation field. The size and shell thickness of HSN are crucial factors in determining their inherent properties, which, in turn, impact their applicability. This research presents a facile approach to synthesizing HSN in which sodium silicate (Na2SiO3) was utilized as the silica precursor that can be directly deposited onto layered double hydroxide (LDH) nanoparticles without the utilization of any surfactant. A subsequent acid treatment was used to eliminate the templates, resulting in the formation of an HSN devoid of mesopores in silica shells. By utilizing various sizes of LDH cores, obtainable via coprecipitation followed by hydrothermal treatment, we were capable of successfully synthesizing the hollow particles with adjustable diameters ranging from 50 to 200 nm. In addition, the shell thickness is varied from 6.8 to 22.5 nm by varying the silicate solution concentration. Results demonstrate that prepared HSNs have low thermal conductivity and high reflectance in the UV-vis-NIR range (averaging 82.1%). These findings suggest that HSN can be utilized as an effective inorganic filler in the formulation of reflective and thermally insulating coatings.
Collapse
Affiliation(s)
- Minh Vuong Phan
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Thi Kim Thoa Tran
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Quynh Nhu Pham
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Manh Huy Do
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Thi Hong No Nguyen
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Minh Ty Nguyen
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Thanh Thao Phan
- Institute
of Chemical Technology, Vietnam Academy
of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Thi Xuan Hang To
- Institute
for Tropical Technology, Vietnam Academy
of Science and Technology, Hanoi 100000, Vietnam
- Graduate
University of Science and Technology, Vietnam
Academy of Science and Technology, Hanoi 100000, Vietnam
| |
Collapse
|
2
|
Montini D, Cara C, D’Arienzo M, Di Credico B, Mostoni S, Nisticò R, Pala L, Scotti R. Recent Advances on Porous Siliceous Materials Derived from Waste. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5578. [PMID: 37629869 PMCID: PMC10456868 DOI: 10.3390/ma16165578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
In recent years, significant efforts have been made in view of a transition from a linear to a circular economy, where the value of products, materials, resources, and waste is maintained as long as possible in the economy. The re-utilization of industrial and agricultural waste into value-added products, such as nanostructured siliceous materials, has become a challenging topic as an effective strategy in waste management and a sustainable model aimed to limit the use of landfill, conserve natural resources, and reduce the use of harmful substances. In light of these considerations, nanoporous silica has attracted attention in various applications owing to the tunable pore dimensions, high specific surface areas, tailorable structure, and facile post-functionalization. In this review, recent progress on the synthesis of siliceous materials from different types of waste is presented, analyzing the factors influencing the size and morphology of the final product, alongside different synthetic methods used to impart specific porosity. Applications in the fields of wastewater/gas treatment and catalysis are discussed, focusing on process feasibility in large-scale productions.
Collapse
Affiliation(s)
- Daniele Montini
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (D.M.); (M.D.); (B.D.C.); (S.M.)
| | - Claudio Cara
- Fluorsid S.p.A., Strada Macchiareddu 2a, 09032 Assemini, Italy; (C.C.); (L.P.)
| | - Massimiliano D’Arienzo
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (D.M.); (M.D.); (B.D.C.); (S.M.)
| | - Barbara Di Credico
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (D.M.); (M.D.); (B.D.C.); (S.M.)
| | - Silvia Mostoni
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (D.M.); (M.D.); (B.D.C.); (S.M.)
| | - Roberto Nisticò
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (D.M.); (M.D.); (B.D.C.); (S.M.)
| | - Luca Pala
- Fluorsid S.p.A., Strada Macchiareddu 2a, 09032 Assemini, Italy; (C.C.); (L.P.)
| | - Roberto Scotti
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (D.M.); (M.D.); (B.D.C.); (S.M.)
| |
Collapse
|
3
|
Norvilaite O, Lindsay C, Taylor P, Armes SP. Silica-Coated Micrometer-Sized Latex Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5169-5178. [PMID: 37001132 PMCID: PMC10100546 DOI: 10.1021/acs.langmuir.3c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
A series of silica-coated micrometer-sized poly(methyl methacrylate) latex particles are prepared using a Stöber silica deposition protocol that employs tetraethyl orthosilicate (TEOS) as a soluble silica precursor. Given the relatively low specific surface area of the latex particles, silica deposition is best conducted at relatively high solids to ensure a sufficiently high surface area. Such conditions aid process intensification. Importantly, physical adsorption of chitosan onto the latex particles prior to silica deposition minimizes secondary nucleation and promotes the formation of silica shells: in the absence of chitosan, well-defined silica overlayers cannot be obtained. Thermogravimetry studies indicate that silica formation is complete within a few hours at 20 °C regardless of the presence or absence of chitosan. Kinetic data obtained using this technique suggest that the adsorbed chitosan chains promote surface deposition of silica onto the latex particles but do not catalyze its formation. Systematic variation of the TEOS/latex mass ratio enables the mean silica shell thickness to be tuned from 45 to 144 nm. Scanning electron microscopy (SEM) studies of silica-coated latex particles after calcination at 400 °C confirm the presence of hollow silica particles, which indicates the formation of relatively smooth (albeit brittle) silica shells under optimized conditions. Aqueous electrophoresis and X-ray photoelectron spectroscopy studies are also consistent with latex particles coated in a uniform silica overlayer. The silica deposition formulation reported herein is expected to be a useful generic strategy for the efficient coating of micrometer-sized particles at relatively high solids.
Collapse
Affiliation(s)
- O. Norvilaite
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| | - C. Lindsay
- Syngenta, Jealott’s Hill International
Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - P. Taylor
- Syngenta, Jealott’s Hill International
Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - S. P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| |
Collapse
|
4
|
Vu KB, Phung TK, Tran TT, Mugemana C, Giang HN, Nhi TLP. Polystyrene nanoparticles prepared by nanoprecipitation: A recyclable template for fabricating hollow silica. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|