1
|
Purba LDA, Susanti H, Admirasari R, Praharyawan S, Taufikurahman, Iwamoto K. Bibliometric insights into microalgae cultivation in wastewater: Trends and future prospects for biolipid production and environmental sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120104. [PMID: 38242026 DOI: 10.1016/j.jenvman.2024.120104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/01/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Cultivation of microalgae in wastewater stream has been extensively reported, especially for simultaneous production of biolipid and wastewater treatment process. This study aimed to derive the research trend and focus on biolipid production from microalgae cultivated in wastewater by using bibliometric approach. The search strategy used in Scopus database resulted in 1339 research articles from 1990 to November 2023. Majority of publications (46%) were affiliated to China and India, showing their predominance in this field. Keywords related to the center of attention included biodiesel, biofuel, biomass and nutrient removal. Meanwhile, keyword with recent publication year, indicating the emerging research trends, revolved around the cultivation techniques and application of the system. Co-culture involving more than one microalgae species, bacteria and yeast showed promising results, while addition of nanoparticles was also found to be beneficial. Increasing exploration on the application of microalgae for treatment of saline wastewater was also reported and the carbon fixation mechanism by microalgae has been widely investigated to promote less environmental impact. Future research on these topics were suggested based on the findings of the bibliometric analyses.
Collapse
Affiliation(s)
- Laila Dina Amalia Purba
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, 16911, West Java, Indonesia.
| | - Hani Susanti
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, 16911, West Java, Indonesia
| | - Rahmania Admirasari
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, 16911, West Java, Indonesia
| | - Swastika Praharyawan
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, 16911, West Java, Indonesia
| | - Taufikurahman
- School of Life Science and Technology, Institut Teknologi Bandung, Jalan Ganesa No. 10, Bandung, 40132, Indonesia
| | - Koji Iwamoto
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| |
Collapse
|
2
|
Suh HS, Do JM, Yeo HT, Yoon HS. Cattle wastewater treatment using green microalga Coelastrella sp. KNUA068 as a promising bioenergy feedstock with enhanced biodiesel quality. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:714-729. [PMID: 38358498 PMCID: wst_2024_015 DOI: 10.2166/wst.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Global water scarcity increased the demand for clean water, leading to attention on microalgae-based biological treatment for wastewater due to economic feasibility and sustainable biomass applications. This study isolated indigenous microalga Coelastrella sp. KNUA068 from a wastewater treatment plant, observed its admissible growth rate in diluted cattle wastewater (DCW), and used it for wastewater treatment analysis. The microalga showed high growth rates in indoor and outdoor cultivation with 100% DCW. In addition, the ammonia nitrogen and nitrate nitrogen removal rates of the microalga were 69.97 and 60.35%, respectively, in indoor cultivation, and 50.63 and 67.20%, respectively, in outdoor cultivation. Carotenoid content analysis revealed lutein as the highest productivity carotenoid, and zeaxanthin production was higher in outdoor cultivation. The biomass exhibited suitable biodiesel quality with a cetane number of 50.8 for high-quality biodiesel production. Coelastrella sp. KNUA068 demonstrates potential for bioenergy feedstock, carotenoid production, and wastewater treatment.
Collapse
Affiliation(s)
- Ho-Seong Suh
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea E-mail:
| | - Jeong-Mi Do
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hee-Tae Yeo
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ho-Sung Yoon
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Dinh VP, Nguyen PT, Tran MC, Luu AT, Hung NQ, Luu TT, Kiet HAT, Mai XT, Luong TB, Nguyen TL, Ho HTT, Nguyen DK, Pham DK, Hoang AQ, Le VT, Nguyen TC. HTDMA-modified bentonite clay for effective removal of Pb(II) from aqueous solution. CHEMOSPHERE 2022; 286:131766. [PMID: 34416581 DOI: 10.1016/j.chemosphere.2021.131766] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
This work studies the Pb(II) removal onto bentonite clay modified by hexadecyl trimethyl ammonium bromide (HDTMA). Characterizations of the unmodified and modified materials were performed by using XRD, SEM, TG-DSC, FT-IR, and BET surface area analyses. Factors influencing the uptake of Pb(II) from aqueous solution, such as pHsolution, ion strength, uptake time, adsorbent dosage, and initial Pb(II) concentration, were examined. The obtained results showed that bentonite clay was successfully modified by HDTMA, resulting in an increase in its surface area by about 70 %. The Pb(II) adsorption onto modified bentonite clay reached equilibrium at pH = 5.0 after 120 min. Studies within the isotherm and kinetic models demonstrated that the adsorption followed the Sips isotherm and pseudo-second-order kinetic models. The maximum monolayer adsorption capacity calculated from the Langmuir model at 30 °C was 25.8 mg/g, which is much higher than that obtained for the unmodified sample (18.9 mg/g). The FT-IR and TG-DSC analyses indicated that the formation of inner-sphere complexes plays a fundamental role in the mechanism of Pb(II) uptake onto HDTMA-bentonite clay. This mechanism of Pb(II) adsorption was further investigated, for the first time, by using the positron annihilation lifetime (PAL) and electron momentum (EMD) measurements. The PAL and EMD analyses indicated that the existence of Al and Si mono-vacancies in the HDTMA-bentonite should have essential contributions to the adsorption mechanism. In particular, we found a very interesting mechanism that the Pb(II) adsorption should occur inside the interlayer spaces of the HDTMA-bentonite.
Collapse
Affiliation(s)
- Van-Phuc Dinh
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Viet Nam.
| | - Phuong-Tung Nguyen
- Center for Interdisciplinary Research in Technology (CIRTech) - HUTECH University of Technology, 475A Dien Bien Phu, Binh Thanh Dist., Ho Chi Minh City, 700000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL 29, Dist. 12, Ho Chi Minh City, 700000, Viet Nam.
| | - Minh-Chien Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 1A TL 29, Dist. 12, Ho Chi Minh City, 700000, Viet Nam
| | - Anh-Tuyen Luu
- Center for Nuclear Technologies, 217 Nguyen Trai, Dist. 1, Ho Chi Minh City, 700000, Viet Nam; Joint Institute for Nuclear Research, 6 Joliot Curie, Dubna, 141980, Russia
| | - N Quang Hung
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Viet Nam
| | - Thi-Thuy Luu
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Viet Nam
| | - H A Tuan Kiet
- Institute of Research and Development, Duy Tan University, Da Nang City, 550000, Viet Nam; Graduate School of Education, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xuan-Truong Mai
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Viet Nam
| | - Thi-Bich Luong
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL 29, Dist. 12, Ho Chi Minh City, 700000, Viet Nam
| | - Thi-Lieu Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 1A TL 29, Dist. 12, Ho Chi Minh City, 700000, Viet Nam; Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap Dist., Ho Chi Minh City, 700000, Viet Nam
| | - Hien T T Ho
- Faculty of Technology, Van Lang University, 45 Nguyen Khac Nhu, Dist. 1, Ho Chi Minh City, 700000, Viet Nam
| | - Duy-Khoi Nguyen
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Viet Nam
| | - Duy-Khanh Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL 29, Dist. 12, Ho Chi Minh City, 700000, Viet Nam
| | - Anh-Quan Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 1A TL 29, Dist. 12, Ho Chi Minh City, 700000, Viet Nam
| | - Van-Toan Le
- Nuclear Research Institute, Vietnam Atomic Energy Institute, 1 Nguyen Tu Luc, Da Lat City, 670000, Lam Dong province, Viet Nam
| | - Thi-Chuong Nguyen
- Le Quy Don High School for the Gifted Students, Vung Tau City, 780000, Viet Nam
| |
Collapse
|