1
|
Waheed S, Ramzan K, Ahmad S, Khan MS, Wajid M, Ullah H, Umar A, Iqbal R, Ullah R, Bari A. Identification and In-Silico study of non-synonymous functional SNPs in the human SCN9A gene. PLoS One 2024; 19:e0297367. [PMID: 38394191 PMCID: PMC10889873 DOI: 10.1371/journal.pone.0297367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
Single nucleotide polymorphisms are the most common form of DNA alterations at the level of a single nucleotide in the genomic sequence. Genome-wide association studies (GWAS) were carried to identify potential risk genes or genomic regions by screening for SNPs associated with disease. Recent studies have shown that SCN9A comprises the NaV1.7 subunit, Na+ channels have a gene encoding of 1988 amino acids arranged into 4 domains, all with 6 transmembrane regions, and are mainly found in dorsal root ganglion (DRG) neurons and sympathetic ganglion neurons. Multiple forms of acute hypersensitivity conditions, such as primary erythermalgia, congenital analgesia, and paroxysmal pain syndrome have been linked to polymorphisms in the SCN9A gene. Under this study, we utilized a variety of computational tools to explore out nsSNPs that are potentially damaging to heath by modifying the structure or activity of the SCN9A protein. Over 14 potentially damaging and disease-causing nsSNPs (E1889D, L1802P, F1782V, D1778N, C1370Y, V1311M, Y1248H, F1237L, M936V, I929T, V877E, D743Y, C710W, D623H) were identified by a variety of algorithms, including SNPnexus, SNAP-2, PANTHER, PhD-SNP, SNP & GO, I-Mutant, and ConSurf. Homology modeling, structure validation, and protein-ligand interactions also were performed to confirm 5 notable substitutions (L1802P, F1782V, D1778N, V1311M, and M936V). Such nsSNPs may become the center of further studies into a variety of disorders brought by SCN9A dysfunction. Using in-silico strategies for assessing SCN9A genetic variations will aid in organizing large-scale investigations and developing targeted therapeutics for disorders linked to these variations.
Collapse
Affiliation(s)
- Sana Waheed
- Faculty of Life Science, Department of Zoology, University of Okara, Okara, Pakistan
| | - Kainat Ramzan
- Faculty of Life Science, Department of Biochemistry, University of Okara, Okara, Pakistan
| | - Sibtain Ahmad
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saleem Khan
- Faculty of Life Science, Department of Zoology, University of Okara, Okara, Pakistan
| | - Muhammad Wajid
- Faculty of Life Science, Department of Zoology, University of Okara, Okara, Pakistan
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Ali Umar
- Faculty of Life Science, Department of Zoology, University of Okara, Okara, Pakistan
| | - Rashid Iqbal
- Faculty of Agriculture and Environment, Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Siri B, Olivieri G, Lepri FR, Poms M, Goffredo BM, Commone A, Novelli A, Häberle J, Dionisi-Vici C. Father-to-daughter transmission in late-onset OTC deficiency: an underestimated mechanism of inheritance of an X-linked disease. Orphanet J Rare Dis 2024; 19:3. [PMID: 38167094 PMCID: PMC10763478 DOI: 10.1186/s13023-023-02997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Ornithine Transcarbamylase Deficiency (OTCD) is an X-linked urea cycle disorder characterized by acute hyperammonemic episodes. Hemizygous males are usually affected by a severe/fatal neonatal-onset form or, less frequently, by a late-onset form with milder disease course, depending on the residual enzymatic activity. Hyperammonemia can occur any time during life and patients could remain non- or mis-diagnosed due to unspecific symptoms. In heterozygous females, clinical presentation varies based on the extent of X chromosome inactivation. Maternal transmission in X-linked disease is the rule, but in late-onset OTCD, due to the milder phenotype of affected males, paternal transmission to the females is possible. So far, father-to-daughter transmission of OTCD has been reported only in 4 Japanese families. RESULTS We identified in 2 Caucasian families, paternal transmission of late-onset OTCD with severe/fatal outcome in affected males and 1 heterozygous female. Furthermore, we have reassessed the pedigrees of other published reports in 7 additional families with evidence of father-to-daughter inheritance of OTCD, identifying and listing the family members for which this transmission occurred. CONCLUSIONS Our study highlights how the diagnosis and pedigree analysis of late-onset OTCD may represent a real challenge for clinicians. Therefore, the occurrence of paternal transmission in OTCD should not be underestimated, due to the relevant implications for disease inheritance and risk of recurrence.
Collapse
Affiliation(s)
- Barbara Siri
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.
- Department of Paediatrics, Città della Salute e della Scienza, OIRM, University of Turin, Turin, Italy.
| | - Giorgia Olivieri
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Francesca Romana Lepri
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Martin Poms
- Division of Clinical Chemistry and Biochemistry and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bianca Maria Goffredo
- Division of Metabolism and Metabolic Diseases Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Commone
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
3
|
Lopes‐Marques M, Pacheco AR, Peixoto MJ, Cardoso AR, Serrano C, Amorim A, Prata MJ, Cooper DN, Azevedo L. Common polymorphic OTC variants can act as genetic modifiers of enzymatic activity. Hum Mutat 2021; 42:978-989. [PMID: 34015158 PMCID: PMC8362079 DOI: 10.1002/humu.24221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022]
Abstract
Understanding the role of common polymorphisms in modulating the clinical phenotype when they co‐occur with a disease‐causing lesion is of critical importance in medical genetics. We explored the impact of apparently neutral common polymorphisms, using the gene encoding the urea cycle enzyme, ornithine transcarbamylase (OTC), as a model system. Distinct combinations of genetic backgrounds embracing two missense polymorphisms were created in cis with the pathogenic p.Arg40His replacement. In vitro enzymatic assays revealed that the polymorphic variants were able to modulate OTC activity both in the presence or absence of the pathogenic lesion. First, we found that the combination of the minor alleles of polymorphisms p.Lys46Arg and p.Gln270Arg significantly enhanced enzymatic activity in the wild‐type protein. Second, enzymatic assays revealed that the minor allele of the p.Gln270Arg polymorphism was capable of ameliorating OTC activity when combined in cis with the pathogenic p.Arg40His replacement. Structural analysis predicted that the minor allele of the p.Gln270Arg polymorphism would serve to stabilize the OTC wild‐type protein, thereby corroborating the results of the experimental assays. Our findings demonstrate the potential importance of cis‐interactions between common polymorphic variants and pathogenic missense mutations and illustrate how standing genetic variation can modulate protein function.
Collapse
Affiliation(s)
- Mónica Lopes‐Marques
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| | - Ana Rita Pacheco
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
| | - Maria João Peixoto
- ICVS‐ Life and Health Sciences Research Institute, School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBragaGuimarãesPortugal
| | - Ana Rita Cardoso
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| | - Catarina Serrano
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| | - António Amorim
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| | - Maria João Prata
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| | - David N. Cooper
- Institute of Medical Genetics; School of MedicineCardiff UniversityCardiffUK
| | - Luísa Azevedo
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| |
Collapse
|
4
|
Nayak A, Kumar S, Singh SP, Bhattacharyya A, Dixit A, Roychowdhury A. Oncogenic potential of ATAD2 in stomach cancer and insights into the protein-protein interactions at its AAA + ATPase domain and bromodomain. J Biomol Struct Dyn 2021; 40:5606-5622. [PMID: 33438526 DOI: 10.1080/07391102.2021.1871959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ATAD2 has recently been shown to promote stomach cancer. However, nothing is known about the functional network of ATAD2 in stomach carcinogenesis. This study illustrates the oncogenic potential of ATAD2 and the participation of its ATPase and bromodomain in stomach malignancy. Expression of ATAD2 in stomach cancer is analyzed by in silico and in vitro techniques including western blot and immunofluorescence microscopy of stomach cancer cells (SCCs) and tissues. The oncogenic potential of ATAD2 is examined thoroughly using genetic alterations, driver gene prediction, survival analysis, identification of interacting partners, and analysis of canonical pathways. To understand the protein-protein interactions (PPI) at residue level, molecular docking and molecular dynamics simulations (1200 ns) are performed. Enhanced expression of ATAD2 is observed in H. pylori-infected SCCs, patient biopsy tissues, and all stages and grades of stomach cancer. High expression of ATAD2 is found to be negatively correlated with the survival of stomach cancer patients. ATAD2 is a cancer driver gene with 37 mutational sites and a predictable factor for stomach cancer prognosis with high accuracy. The top canonical pathways of ATAD2 indicate its participation in stomach malignancy. The ATAD2-PPI in stomach cancer identify top-ranked partners; ESR1, SUMO2, SPTN2, and MYC show preference for the bromodomain whereas NCOA3 and HDA11 have preference for the ATPase domain of ATAD2. The oncogenic characterization of ATAD2 provides strong evidence to consider ATAD2 as a stomach cancer biomarker. These studies offer an insight for the first time into the ATAD2-PPI interface presenting a novel target for cancer therapeutics. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditi Nayak
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sugandh Kumar
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Asima Bhattacharyya
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, Khurda, Odisha, India
| | | | - Anasuya Roychowdhury
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
Mutation Study of Malaysian Patients with Ornithine Transcarbamylase Deficiency: Clinical, Molecular, and Bioinformatics Analyses of Two Novel Missense Mutations of the OTC Gene. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4320831. [PMID: 30175132 PMCID: PMC6098936 DOI: 10.1155/2018/4320831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/25/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022]
Abstract
Ornithine transcarbamylase deficiency (OTCD), an X-linked disorder that results from mutations in the OTC gene, causes hyperammonemia and leads to various clinical manifestations. Mutations occurring close to the catalytic site of OTCase can cause severe OTCD phenotypes compared with those caused by mutations occurring on the surface of this protein. In this study, we report two novel OTC missense mutations, Q171H and N199H, found in Malaysian patients. Q171H and N199H caused neonatal onset OTCD in a male and late OTCD in a female, respectively. In silico predictions and molecular docking were performed to examine the effect of these novel mutations, and the results were compared with other 30 known OTC mutations. In silico servers predicted that Q171H and N199H, as well as 30 known missense mutations, led to the development of OTCD. Docking analysis indicated that N-(phosphonoacetyl)-L-ornithine (PALO) was bound to the catalytic site of OTCase mutant structure with minimal conformational changes. However, the mutations disrupted interatomic interactions in the catalytic site. Therefore, depending on the severity of disruption occurring at the catalytic site, the mutation may affect the efficiency of mechanism and functions of OTCase.
Collapse
|
6
|
Rahman R, Sharma I, Gahlot LK, Hasija Y. DermaGene and VitmiRS: a comprehensive systems analysis of genetic dermatological disorders. BIOMEDICAL DERMATOLOGY 2018. [DOI: 10.1186/s41702-018-0028-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
In silico analysis of deleterious single nucleotide polymorphisms in human BUB1 mitotic checkpoint serine/threonine kinase B gene. Meta Gene 2016; 9:142-50. [PMID: 27331020 PMCID: PMC4913181 DOI: 10.1016/j.mgene.2016.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 04/12/2016] [Accepted: 05/06/2016] [Indexed: 11/23/2022] Open
Abstract
One of the major challenges in the analysis of human genetic variation is to distinguish mutations that are functionally neutral from those that contribute to disease. BubR1 is a key protein mediating spindle-checkpoint activation that plays a role in the inhibition of the anaphase-promoting complex/cyclosome (APC/C), delaying the onset of anaphase and ensuring proper chromosome segregation. Owing to the importance of BUB1B gene in mitotic checkpoint a functional analysis using different in silico approaches was undertaken to explore the possible associations between genetic mutations and phenotypic variation. In this work we found that 3 nsSNPs I82N, P334L and R814H have a functional effect on protein function and stability. A literature search revealed that R814H was already implicated in human diseases. Additionally, 2 SNPs in the 5' UTR region was predicted to exhibit a pattern change in the internal ribosome entry site (IRES), and eight MicroRNA binding sites were found to be highly affected due to 3' UTR SNPs. These in silico predictions will provide useful information in selecting the target SNPs that are likely to have functional impact on the BUB1B gene.
Collapse
|