1
|
Shishparenok AN, Gladilina YA, Zhdanov DD. Engineering and Expression Strategies for Optimization of L-Asparaginase Development and Production. Int J Mol Sci 2023; 24:15220. [PMID: 37894901 PMCID: PMC10607044 DOI: 10.3390/ijms242015220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Genetic engineering for heterologous expression has advanced in recent years. Model systems such as Escherichia coli, Bacillus subtilis and Pichia pastoris are often used as host microorganisms for the enzymatic production of L-asparaginase, an enzyme widely used in the clinic for the treatment of leukemia and in bakeries for the reduction of acrylamide. Newly developed recombinant L-asparaginase (L-ASNase) may have a low affinity for asparagine, reduced catalytic activity, low stability, and increased glutaminase activity or immunogenicity. Some successful commercial preparations of L-ASNase are now available. Therefore, obtaining novel L-ASNases with improved properties suitable for food or clinical applications remains a challenge. The combination of rational design and/or directed evolution and heterologous expression has been used to create enzymes with desired characteristics. Computer design, combined with other methods, could make it possible to generate mutant libraries of novel L-ASNases without costly and time-consuming efforts. In this review, we summarize the strategies and approaches for obtaining and developing L-ASNase with improved properties.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
- Department of Biochemistry, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
2
|
Andjelkovic M, Zinovjev K, Ramos-Guzmán CA, Ruiz- Pernía JJ, Tuñón I. Elucidation of the Active Form and Reaction Mechanism in Human Asparaginase Type III Using Multiscale Simulations. J Chem Inf Model 2023; 63:5676-5688. [PMID: 37635309 PMCID: PMC10852353 DOI: 10.1021/acs.jcim.3c00900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/29/2023]
Abstract
l-asparaginases catalyze the asparagine hydrolysis to aspartate. These enzymes play an important role in the treatment of acute lymphoblastic leukemia because these cells are unable to produce their own asparagine. Due to the immunogenic response and various side effects of enzymes of bacterial origin, many attempts have been made to replace these enzymes with mammalian enzymes such as human asparaginase type III (hASNaseIII). This study investigates the reaction mechanism of hASNaseIII through molecular dynamics simulations, quantum mechanics/molecular mechanics methods, and free energy calculations. Our simulations reveal that the dimeric form of the enzyme plays a vital role in stabilizing the substrate in the active site, despite the active site residues coming from a single protomer. Protomer-protomer interactions are essential to keep the enzyme in an active conformation. Our study of the reaction mechanism indicates that the self-cleavage process that generates an N-terminal residue (Thr168) is required to activate the enzyme. This residue acts as the nucleophile, attacking the electrophilic carbon of the substrate after a proton transfer from its hydroxyl group to the N-terminal amino group. The reaction mechanism proceeds with the formation of an acyl-enzyme complex and its hydrolysis, which turns out to be the rate-determining step. Our proposal of the enzymatic mechanism sheds light on the role of different active site residues and rationalizes the studies on mutations. The insights provided here about hASNaseIII activity could contribute to the comprehension of the disparities among different ASNases and might even guide the design of new variants with improved properties for acute lymphoblastic leukemia treatment.
Collapse
Affiliation(s)
- Milorad Andjelkovic
- Departamento
de Química Física, Universidad
de Valencia, 46100 Burjassot, Spain
| | - Kirill Zinovjev
- Departamento
de Química Física, Universidad
de Valencia, 46100 Burjassot, Spain
| | - Carlos Alberto Ramos-Guzmán
- Departamento
de Química Física, Universidad
de Valencia, 46100 Burjassot, Spain
- Instituto
de Materiales Avanzados, Universidad Jaume
I, 12071 Castelló, Spain
| | | | - Iñaki Tuñón
- Departamento
de Química Física, Universidad
de Valencia, 46100 Burjassot, Spain
| |
Collapse
|
3
|
Molecular cloning, characterization, and in-silico analysis of l-asparaginase from Himalayan Pseudomonas sp. PCH44. 3 Biotech 2022; 12:162. [PMID: 35822154 PMCID: PMC9271149 DOI: 10.1007/s13205-022-03224-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/17/2022] [Indexed: 11/01/2022] Open
Abstract
l-Asparaginase (l-ASNase) is a key enzyme used to treat acute lymphoblastic leukemia, a childhood blood cancer. Here, we report on the characterization of a recombinant l-ASNase (Ps44-asn II) from Pseudomonas sp. PCH44. The gene was identified from its genome, cloned, and overexpressed in the host Escherichia coli (E. coli). The recombinant l-ASNase (Ps44-ASNase II) was purified with a monomer size of 37.0 kDa and a homotetrameric size of 148.0 kDa. The purified Ps44-ASNase II exhibited optimum activity of 40.84 U/mg in Tris-HCl buffer (50 mM, pH 8.5) at 45 °C for 15 min. It retained 76.53% of enzyme activity at 45 °C after 120 min of incubation. The half-life and K d values were 600 min and 1.10 × 10-3 min-1, respectively, at 45 °C. The kinetic constants values K m and V max were 0.56, 0.728 mM, and 29.41, 50.12 U/mg for l-asparagine and l-glutamine, respectively. However, k cat for l-glutamine is more (30.91 s-1) than l-asparagine (18.06 s-1), suggesting that enzymes act more efficiently on l-glutamine than l-asparagine. The docking analysis of l-asparagine and l-glutamine with active site residues of the enzyme revealed a molecular basis for high l-glutaminase (L-GLNase) activity and provided insights into the role of key amino acid residues in the preferential enzymatic activities. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03224-0.
Collapse
|
4
|
Xu Y, Liu S, Bian L, Li Z, Luo C, Chen Y, Wu X. Engineering of a UDP-Glycosyltransferase for the Efficient Whole-Cell Biosynthesis of Siamenoside I in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1601-1609. [PMID: 35099964 DOI: 10.1021/acs.jafc.1c07699] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The combination of the insufficient availability and the complex structure of siamenoside I (SI), the sweetest glucoside isolated from Siraitia grosvenorii to date, limited its use as a natural sweetener. To solve this problem, an improved biocatalyst, UGT-M2, was semi-rationally created by engineering the uridine diphosphate glycosyltransferase UGT94-289-2 from S. grosvenorii for the monoglucosylation of mogroside IIIE (MG IIIE) to SI. Subsequently, an engineered Escherichia coli cell was constructed, which combined UGT-M2 with a UDP-glucose regeneration system to circumvent the need for expensive UDP-glucose to produce SI. After optimization, high-purity SI (>96.4%) was efficiently prepared from MG IIIE at a 1 L scale with a productivity of 29.78 g/(L day) and a molar yield of 76.5% and without using exogenous UDP-glucose. This study not only developed a whole-cell approach for the preparation of SI but also provided an alternative glycosyltransferase variant for SI biosynthesis with synthetic biology in the future.
Collapse
Affiliation(s)
- Yuncong Xu
- Department of Biochemistry, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| | - Shiqiang Liu
- Department of Biochemistry, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| | - Liuyun Bian
- Department of Biochemistry, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| | - Zhenlin Li
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, 100 Shizi Street. Hongshan Road, Nanjing, Jiangsu Province 210028, PR China
| | - Chen Luo
- Department of Biochemistry, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| | - Yijun Chen
- Laboratory of Chemical Biology, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| | - Xuri Wu
- Department of Biochemistry, College of Life Sciences and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, PR China
| |
Collapse
|
5
|
Rui Y, Zuo Y, Yang L, Xu J, Wei Y, Yi Z. Molecular dynamics and spectral analysis for the binding of methoxylated polybrominated diphenyl ethers to lysozyme. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Moradi S, Moradi P, Ansari M, Khosravi R, Farhadian N, Batooie N, Shahlaei M. Investigating the protective effects of carbohydrate coatings on the structure and dynamic of l‐asparaginase against heat stress; a molecular dynamic simulation. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Molecular docking study of L-Asparaginase I from Vibrio campbellii in the treatment of acute lymphoblastic leukemia (ALL). EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The potential use of asparaginases has gained tremendous significance in the treatment of acute lymphoblastic leukemia (ALL). Earlier studies suggest L-asparaginases (L-ASP) extracted from Escherichia coli and Erwinia aroideae regulates L-asparagine (L-Asn) from the circulating blood. Prolonged exposure to these enzymes may lead to hypersensitivity reactions. So, it is important to find novel asparaginases with anti-cancer properties. The three-dimensional structure of L-ASP I from Vibrio campbellii was determined by homology modeling using EasyModeller v.4.0. The structure was validated with quality indexing tools and was deposited in Protein Model DataBase. Molecular docking was performed between L-ASP I and ligand substrate L-Asn to study enzyme-substrate interactions. Qualitative and quantitative analysis of L-ASP I enzyme was found to be reliable and stable with a significant protein quality factor (LG score: 7.129). The enzyme is a dimer, belongs to α/β class of proteins. The active sites comprises of N-glycosylation site and a catalytic triad (T14-S117-D92). The binding energy of the docked complex was calculated to be -7.45 kcal/mol. The amino acid T14 identified as a primary nucleophile essential for catalytic reaction. The enzyme L-ASP I of V. campbellii provides a detailed view of structure and functional aspects with ligand substrate L-Asn. This in silico investigation has explicitly demonstrated for the first time that cytosolic L-ASP Type I of V. campbellii to have a catalytic triad which was attributed only to periplasmic L-ASP Type II. Thus, L-ASP I can serve as anti-leukemic agent in the treatment, management and control of ALL.
Collapse
|
8
|
Pola M, Rajulapati SB, Potla Durthi C, Erva RR, Bhatia M. In silico modelling and molecular dynamics simulation studies on L-Asparaginase isolated from bacterial endophyte of Ocimum tenuiflorum. Enzyme Microb Technol 2018; 117:32-40. [PMID: 30037549 DOI: 10.1016/j.enzmictec.2018.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 02/01/2023]
Abstract
Bioactive compounds from endophytes have been used to treat various diseases. In the present study, L-Asparaginase producing endophytes were isolated from Ocimum tenuiflorum (Tulasi) from NIT Warangal, Telangana, India to treat Acute Lymphoblastic Leukemia (ALL) in which L-Asparagine (L-Asn) deamination plays a vital role in ALL treatment. 20 (bacteria and fungi) out of 35 endophytes have been screened for L-Asparaginase production using rapid plate assay technique, in which four strains produced high amounts of L-Asparaginase. 16 s Ribosomal RNA sequencing studies were performed, Bacillus stratosphericus organism was identified, and purified L-Asparaginase sequence has been tailored using MALDI/TOF (Applied Biosystems). The homology model was developed by using MODELLER 9.15v as the endophyte lacks crystal structure of L-Asparaginase enzyme and validated by dint of quality index tools. Docking studies were performed using iGemdock 2.1v. In comparison, free energy binding efficiency of receptor towards L-Asparagine (L-Asn) is good with lesser energy -71.6 kcal/mol in comparison to L-Glutamine (L-Gln) having -67.7 kcal/mol. In order to find the stability of the docked complexes in dynamics environment, molecular dynamics and simulation studies were performed using GROMACS V4.6.5. The trajectory analysis for 10 ns shows the better RMSD, RMSF, Rg and average number of hydrogen bonds for complex 1 (L-Asparaginase + L-Asn docked complex). Hence, complex 1 was found to be more stable than Complex 2 (L-Asparaginase + L-Gln docked complex).
Collapse
Affiliation(s)
- Madhuri Pola
- National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | | | | | | | - Mayuri Bhatia
- National Institute of Technology Warangal, Warangal 506004, Telangana, India
| |
Collapse
|
9
|
Multi level statistical optimization of l-asparaginase from Bacillus subtilis VUVD001. 3 Biotech 2018; 8:24. [PMID: 29279817 DOI: 10.1007/s13205-017-1020-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022] Open
Abstract
Physical and chemical factors influencing the anti-leukemic l-asparaginase enzyme production by Bacillus subtilis VUVD001 were optimized using multi-stage optimization on the basis of preliminary experimental outcomes obtained by conventional one-factor-at-a-time approach using shake flasks. Process variables namely carbon, nitrogen sources, pH and temperature were taken into consideration during response surface methodology (RSM) optimization. The finest enzyme activity of 0.51 IUml-1 obtained by OFAT method was enhanced by 3.2 folds using RSM optimization. Artificial neural network (ANN) modelling and genetic algorithm (GA) based optimizations were further carried out to improve the enzyme drug yield. Results were also validated by conducting experiments at optimum conditions determined by RSM and GA optimization methods. The novel bacterium yielded in 2.88 IUml-1 of enzyme activity at optimum process variables determined by GA optimization, i.e., 0.5% glucose, 8.0% beef extract, 8.3 pH and 49.9 °C temperature. The study explored the optimized culture conditions for better yielding of anti-leukemic enzyme drug from a new bacterial source namely Bacillus subtilis VUVD001.
Collapse
|