1
|
Deswal G, Selwal MK, Nirvan H, Selwal KK. Priestia flexa KS1: A new bacterial strain isolated from human faeces implicated in mucin degradation. Int Microbiol 2022:10.1007/s10123-022-00312-2. [PMID: 36502447 DOI: 10.1007/s10123-022-00312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
The human gut acts as a habitat for diverse microbial communities, including mucin utilizers that play a significant role in host health and diseases. In this study, a gram-positive, rod-shaped mucin degrading bacterium was isolated from human faeces that belonged to the Priestia flexa species. Priestia isolate was analyzed for mucin-degrading ability and found that the KS1 strain could grow on mucin as the sole carbon source. The experimental results of the mucolytic zone around the colony and a 58% decrease in carbohydrate concentration confirmed the ability of Priestia to degrade mucin. The intracellular and extracellular glycosidase assay data supported the above results suggesting the ability of P. flexa to produce glycan hydrolysis enzymes that convert complex mucin oligosaccharide chains into simple glycans. The survival ability of the KS1 strain in simulated gastrointestinal conditions revealed that it could tolerate low pH (≥ 50% cell viability at pH 1.0) and 0.5% bile salt concentration (≥ 85% cell viability). The strain showed low hydrophobicity towards n-hexadecane (26.51 ± 0.92%) and xylene (21.71 ± 0.54%). Moreover, the KS1 culture was resistant to cefixime, clavulanic acid/ceftazidime, nafallin, methicillin, trimethoprim, kanamycin, and nalidixic antibiotic. Our results highlight the isolation of P. flexa KS1 strain that degrade mucin under in vitro conditions and show its better acclimatization within the GI environment. Further studies are required to unearth the molecular mechanisms involved in the degradation of mucin oligosaccharides in the human gut, advancing our understanding of health and disease.
Collapse
|
2
|
Van Chen T, Cuong TD, Quy PT, Bui TQ, Van Tuan L, Van Hue N, Triet NT, Ho DV, Bao NC, Nhung NTA. Antioxidant activity and α-glucosidase inhibitability of Distichochlamys citrea M.F. Newman rhizome fractionated extracts: in vitro and in silico screenings. CHEMICAL PAPERS 2022; 76:5655-5675. [PMID: 35669698 PMCID: PMC9159386 DOI: 10.1007/s11696-022-02273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/09/2022] [Indexed: 01/18/2023]
Abstract
Distichochlamys citrea M.F. Newman (commonly known as “Black Ginger”) is an endemic plant to Vietnam and has been extensively exploited by folk medication for treatments of infection-related diseases and diabetes. In this work, its rhizomes were subjected to fractionated extraction, phytochemical examination, evaluation of antioxidant effect by DDPH free radical neutralization, and inhibitory activity toward α-glucosidase. The compositional components were subjected to in silico screening, including density functional theory calculation, molecular docking simulation, physicochemical analysis, and pharmacokinetic regression. In the trials, EtOAc fraction is found as the bioactive part of most effectiveness, regarding both antioxidant effect (IC50 = 90.27 µg mL−1) and α-glucosidase inhibitory activity (IC50 = 115.75 μg mL−1). Chemical determination reveals there are 13 components of its composition. DFT-based calculations find no abnormal constraints in their structures. Docking-based simulation provides order of inhibitory effectiveness: 3-P53341 > 12-P53341 > 7-P53341 > 4-P53341 > 11-P53341 > 10-P53341. QSARIS-based investigations implicate their biocompatibility. ADMET-based regressions indicate that all candidates are generally safe for medicinal applications. The findings would contribute to the basis for further studies on the chemical compositions of Distichochlamys citrea and their biological activities.
Collapse
Affiliation(s)
- Tran Van Chen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000 Vietnam
| | - To Dao Cuong
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Yen Nghia, Ha Dong District, Hanoi, 12116 Vietnam
| | - Phan Tu Quy
- Department of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot, 630000 Vietnam
| | - Thanh Q. Bui
- Department of Chemistry, University of Sciences, Hue University, Hue City, 530000 Vietnam
| | - Le Van Tuan
- Department of Environmental Science, University of Sciences, Hue University, Hue City, 530000 Vietnam
| | - Nguyen Van Hue
- Faculty of Engineering and Food Technology, University of Agriculture and Forestry, Hue University, Hue City, 530000 Vietnam
| | - Nguyen Thanh Triet
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000 Vietnam
| | - Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, 530000 Vietnam
| | | | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue City, 530000 Vietnam
| |
Collapse
|
3
|
Enzymatic glycosylation of menthol: optimization of synthesis and extraction processes using response surface methodology and biological evaluation of synthesized product. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Silva MRO, Silva AB, Barbosa JC, Amaral C, Lopes PFM. Empowering fisherwomen leaders helped reduce the effects of the COVID-19 pandemic on fishing communities: Insights from Brazil. MARINE POLICY 2022; 135:104842. [PMID: 34732972 PMCID: PMC8554008 DOI: 10.1016/j.marpol.2021.104842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 10/11/2021] [Accepted: 10/24/2021] [Indexed: 05/07/2023]
Abstract
Small-scale fishers in the developing world have been particularly affected by the COVID-19 pandemic given that they belong to one of the most socioeconomically vulnerable groups. In Brazil, one of the countries most affected by the pandemic, it was expected early on that the economy and wellbeing of fishers would be negatively impacted, yet fishers were expected to show some adaptive and coping mechanisms. To assess whether this was the case, 40 fishers, who are also leaders of fishing associations representing over 80 thousand fishers throughout the country, were interviewed. Results revealed that female leaders appraised the economic and health / wellbeing impacts to be harsher on fishers than men did. Moreover, fishers on the coast were found to be better able to adapt than those inland, although both had low levels of adaptive capacity. The nature of coping and adaptive mechanisms was also found to be different between locations. Whereas leaders from coastal associations stated that most of the adaptive responses occurred in the post-harvest sector (e.g., changes to the types of sales and changes to supply chain actors), leaders from inland communities stated that the changes that occurred related specifically to fishing (e.g., decrease in effort and changes in fishing grounds). These findings suggest that: 1) women may be better prepared to respond to COVID-19 because their appraisal may be more realistic than men, 2) the historic vulnerability of fishing communities may limit their adaptative capacity, and 3) coastal fishers have likely found ways to maintain part of their trade, contrary to inland fishers. Thus, to better help small-scale fisheries to cope with this particular pandemic or other large disruptive impacts, it would be recommended to invest in women in leadership roles while also guaranteeing that fishers have the minimal conditions to cope with and adapt to impacts. The latter can be done by assuring emergency cash transfers for the duration of the impact, as with the still ongoing pandemic, and investing in building fisher resilience for future shocks.
Collapse
Affiliation(s)
- Monalisa R O Silva
- Fishing ecology, management, and economics group, Department of Ecology, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - André B Silva
- Graduate Program in Development and Environment, Universidade Federal do Piauí, Teresina, Brazil
| | - Jaciana C Barbosa
- Graduate Program in Development and Environment, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Cássia Amaral
- Fishing ecology, management, and economics group, Department of Ecology, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Priscila F M Lopes
- Fishing ecology, management, and economics group, Department of Ecology, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
5
|
Ifra, Singh A, Saha S. High Adsorption of α-Glucosidase on Polymer Brush-Modified Anisotropic Particles Acquired by Electrospraying-A Combined Experimental and Simulation Study. ACS APPLIED BIO MATERIALS 2021; 4:7431-7444. [PMID: 35006717 DOI: 10.1021/acsabm.1c00682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this particular contribution, we aim to immobilize a model enzyme such as α-glucosidase onto poly(DMAEMA) [poly(2-dimethyl amino ethyl methacrylate)] brush-modified anisotropic (cup- and disc-shaped) biocompatible polymeric particles. The anisotropic particles comprising a blend of PLA [poly(lactide)] and poly(MMA-co-BEMA) [poly((methyl methacrylate)-co-(2-(2-bromopropionyloxy) ethyl methacrylate)] were acquired by electrospraying, a scalable and convenient technique. We have also demonstrated the role of a swollen polymer brush grafted on the surface of cup-/disc-shaped particles via surface-initiated atom transfer radical polymerization in immobilizing an unprecedentedly high loading of enzyme [441 mg/g (cup)-589 mg/g (disc) of particles, 15-20 times higher than that of the literature-reported system] as compared to non-brush-modified particles. Circular dichroism spectroscopy was used to predict the structural changes of the enzyme upon immobilization onto the carrier particles. An enormously high amount of enzymes with preserved activity (∼85 ± 13% for cups and ∼78 ± 15% for discs) was found to adhere onto brush-modified particles at pH 7 via electrostatic adsorption. These findings were further explored at the atomistic level using a coarse-grained dissipative particle dynamics simulation approach, which exhibited excellent correlation with experimental results. In addition, accelerated particle separation was also achieved via magnetic force-induced aggregation within 20 min (without a centrifuge) by incorporating magnetic nanoparticles into disc-shaped particles while electrojetting. This further strengthens the technical feasibility of the process, which holds immense potential to be applied for various enzymes intended for several applications.
Collapse
Affiliation(s)
- Ifra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
6
|
Lee H, Lee S, Kyung S, Ryu J, Kang S, Park M, Lee C. Metabolite Profiling and Anti-Aging Activity of Rice Koji Fermented with Aspergillus oryzae and Aspergillus cristatus: A Comparative Study. Metabolites 2021; 11:524. [PMID: 34436465 PMCID: PMC8398186 DOI: 10.3390/metabo11080524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
Rice koji, used as a starter for maximizing fermentation benefits, produces versatile end products depending on the inoculum microbes used. Here, we performed metabolite profiling to compare rice koji fermented with two important filamentous fungus, Aspergillus oryzae and A. cristatus, during 8 days. The multivariate analyses showed distinct patterns of primary and secondary metabolites in the two kojis. The rice koji fermented with A. oryzae (RAO) showed increased α-glucosidase activity and higher contents of sugar derivatives than the one fermented with A. cristatus (RAC). RAC showed enhanced β-glucosidase activity and increased contents of flavonoids and lysophospholipids, compared to RAO. Overall, at the final fermentation stage (8 days), the antioxidant activities and anti-aging effects were higher in RAC than in RAO, corresponding to the increased metabolites such as flavonoids and auroglaucin derivatives in RAC. This comparative metabolomic approach can be applied in production optimization and quality control analyses of koji products.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.L.); (S.L.)
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.L.); (S.L.)
| | - Seoyeon Kyung
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Jeoungjin Ryu
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Seunghyun Kang
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Myeongsam Park
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Choonghwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.L.); (S.L.)
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
7
|
Lisi F, Peterson JR, Gooding JJ. The application of personal glucose meters as universal point-of-care diagnostic tools. Biosens Bioelectron 2020; 148:111835. [DOI: 10.1016/j.bios.2019.111835] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
|
8
|
Enzymatic characteristics of a recombinant protease (rPepD) from Aspergillus niger expressed in Pichia pastoris. Protein Expr Purif 2019; 162:67-71. [PMID: 31181254 DOI: 10.1016/j.pep.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/12/2019] [Accepted: 06/07/2019] [Indexed: 11/21/2022]
Abstract
The Aspergillus niger AS3.350 protease gene (pepD) was successfully cloned and expressed in Pichia pastoris KM71. The rPepD activity was 331.5 U/ml, and the optimum temperature and pH were 45 °C and 8-9 respectively. In addition, enzyme activity was significantly inhibited by PMSF, EDTA, Mg2+, Fe2+ and Zn2+ ions, and stimulated by Ca2+ which selectively bound to the T302 and D323 residues. Mutation in either or both of the residues inhibited rPepD expression, indicating that binding to Ca2+ is necessary for PepD expression and activity. The rPepD showed a wide substrate range, and was particularly selective to those with hydrophobic amino acids. The degree of rPepD-mediated hydrolysis of soy protein isolate, corn flour and gluten meal were 8.7%, 38.1% and 33.6% respectively, which was higher than that by Alcalase, indicating that rPepD has potential applications in the food processing industry.
Collapse
|