1
|
Wang M, Wang X, Liu B, Lang C, Wang W, Liu Y, Wang X. Synthesis of Ciprofloxacin-capped Gold Nanoparticles Conjugates with Enhanced Sonodynamic Antimicrobial Activity in vitro. J Pharm Sci 2023; 112:336-343. [PMID: 35948155 DOI: 10.1016/j.xphs.2022.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
The purpose of this article is to discuss whether gold nanoparticles (GNPs) play an auxo-action on ciprofloxacin (CIP)-mediated sonodynamic antimicrobial chemotherapy (SACT) in vitro. The measuring criterion of SACT, bactericidal efficiency, was measured by plate colony-counting methods. According to research findings, the duration of ultrasound (US) exposure, solution temperature and CIP:GNPs concentration were all critical influencing factors of SACT. Furthermore, scanning electron microscopy revealed that the group of CIP:GNPs combined with US showed the most severe damaged effect on Escherichia coli and Staphylococcus aureus, resulting in the loss of their typical microbial morphology and the disclosure of contents. Therefore, the above experimental results confirmed initially that GNPs could enhance the bacteriostasis of CIP-mediated SACT. And the intracellular reactive oxygen species (ROS) detection assays proved that this acceleration might be connected to the ROS generated through the ultrasonic mechanics. In conclusion, GNPs would be regarded as a promising auxiliary material for SACT, since they are both used to be the medication carriers and sonosensitizer accelerants.
Collapse
Affiliation(s)
- Mengyuan Wang
- College of Pharmacy, Liaoning University, Shenyang 110036, China
| | - Xin Wang
- College of Pharmacy, Liaoning University, Shenyang 110036, China
| | - Bin Liu
- College of Pharmacy, Liaoning University, Shenyang 110036, China.
| | - Chenyu Lang
- College of Pharmacy, Liaoning University, Shenyang 110036, China
| | - Wei Wang
- College of Pharmacy, Liaoning University, Shenyang 110036, China
| | - Yu Liu
- College of Pharmacy, Liaoning University, Shenyang 110036, China
| | - Xiao Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, China.
| |
Collapse
|
2
|
naief MF, Khalaf YH, Mohammed AM. Novel photothermal therapy using multi-walled carbon nanotubes and platinum nanocomposite for human prostate cancer PC3 cell line. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Zhang Q, Hou D, Wen X, Xin M, Li Z, Wu L, Pathak JL. Gold nanomaterials for oral cancer diagnosis and therapy: Advances, challenges, and prospects. Mater Today Bio 2022; 15:100333. [PMID: 35774196 PMCID: PMC9237953 DOI: 10.1016/j.mtbio.2022.100333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Early diagnosis and treatment of oral cancer are vital for patient survival. Since the oral cavity accommodates the second largest and most diverse microbiome community after the gut, the diagnostic and therapeutic approaches with low invasiveness and minimal damage to surrounding tissues are keys to preventing clinical intervention-related infections. Gold nanoparticles (AuNPs) are widely used in the research of cancer diagnosis and therapy due to their excellent properties such as surface-enhanced Raman spectroscopy, surface plasma resonance, controlled synthesis, the plasticity of surface morphology, biological safety, and stability. AuNPs had been used in oral cancer detection reagents, tumor-targeted therapy, photothermal therapy, photodynamic therapy, and other combination therapies for oral cancer. AuNPs-based noninvasive diagnosis and precise treatments further reduce the clinical intervention-related infections. This review is focused on the recent advances in research and application of AuNPs for early screening, diagnostic typing, drug delivery, photothermal therapy, radiotherapy sensitivity treatment, and combination therapy of oral cancer. Distinctive reports from the literature are summarized to highlight the latest advances in the development and application of AuNPs in oral cancer diagnosis and therapy. Finally, this review points out the challenges and prospects of possible applications of AuNPs in oral cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qing Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| | - Dan Hou
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Xueying Wen
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Mengyu Xin
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Ziling Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| |
Collapse
|
4
|
Tukova A, Kuschnerus IC, Garcia-Bennett A, Wang Y, Rodger A. Gold Nanostars with Reduced Fouling Facilitate Small Molecule Detection in the Presence of Protein. NANOMATERIALS 2021; 11:nano11102565. [PMID: 34685003 PMCID: PMC8538065 DOI: 10.3390/nano11102565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022]
Abstract
Gold nanoparticles have the potential to be used in biomedical applications from diagnostics to drug delivery. However, interactions of gold nanoparticles with different biomolecules in the cellular environment result in the formation of a “protein corona”—a layer of protein formed around a nanoparticle, which induces changes in the properties of nanoparticles. In this work we developed methods to reproducibly synthesize spheroidal and star-shaped gold nanoparticles, and carried out a physico-chemical characterization of synthesized anionic gold nanospheroids and gold nanostars through transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential (ZP), nanoparticles tracking analysis (NTA), ultraviolet-visible (UV–Vis) spectroscopy and estimates of surface-enhanced Raman spectroscopy (SERS) signal enhancement ability. We analyzed how they interact with proteins after pre-incubation with bovine serum albumin (BSA) via UV–Vis, DLS, ZP, NTA, SERS, cryogenic TEM (cryo-TEM) and circular dichroism (CD) spectroscopy. The tests demonstrated that the protein adsorption on the particles’ surfaces was different for spheroidal and star shaped particles. In our experiments, star shaped particles limited the protein corona formation at SERS “hot spots”. This benefits the small-molecule sensing of nanostars in biological media. This work adds more understanding about protein corona formation on gold nanoparticles of different shapes in biological media, and therefore guides design of particles for studies in vitro and in vivo.
Collapse
Affiliation(s)
- Anastasiia Tukova
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2019, Australia; (A.G.-B.); (A.R.)
- Correspondence: (A.T.); (Y.W.)
| | - Inga Christine Kuschnerus
- Electron Microscopy Unit, University of New South Wales, Sydney, NSW 2052, Australia;
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alfonso Garcia-Bennett
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2019, Australia; (A.G.-B.); (A.R.)
| | - Yuling Wang
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2019, Australia; (A.G.-B.); (A.R.)
- Correspondence: (A.T.); (Y.W.)
| | - Alison Rodger
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2019, Australia; (A.G.-B.); (A.R.)
| |
Collapse
|
5
|
Lebepe TC, Parani S, Oluwafemi OS. Graphene Oxide-Coated Gold Nanorods: Synthesis and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2149. [PMID: 33126610 PMCID: PMC7693020 DOI: 10.3390/nano10112149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/29/2023]
Abstract
The application of gold nanorods (AuNRs) and graphene oxide (GO) has been widely studied due to their unique properties. Although each material has its own challenges, their combination produces an exceptional material for many applications such as sensor, therapeutics, and many others. This review covers the progress made so far in the synthesis and application of GO-coated AuNRs (GO-AuNRs). Initially, it highlights different methods of synthesizing AuNRs and GO followed by two approaches (ex situ and in situ approaches) of coating AuNRs with GO. In addition, the properties of GO-AuNRs composite such as biocompatibility, photothermal profiling, and their various applications, which include photothermal therapy, theranostic, sensor, and other applications of GO-AuNRs are also discussed. The review concludes with challenges associated with GO-AuNRs and future perspectives.
Collapse
Affiliation(s)
- Thabang C. Lebepe
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (T.C.L.); (S.P.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Sundararajan Parani
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (T.C.L.); (S.P.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| | - Oluwatobi S. Oluwafemi
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (T.C.L.); (S.P.)
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
6
|
Synthesis, radical scavenging, and antimicrobial activities of core–shell Au/Ni microtubes. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01066-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Khaniabadi PM, Shahbazi-Gahrouei D, Aziz AA, Dheyab MA, Khaniabadi BM, Mehrdel B, Jameel MS. Trastuzumab conjugated porphyrin-superparamagnetic iron oxide nanoparticle: A potential PTT-MRI bimodal agent for herceptin positive breast cancer. Photodiagnosis Photodyn Ther 2020; 31:101896. [PMID: 32585402 DOI: 10.1016/j.pdpdt.2020.101896] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/07/2020] [Accepted: 06/19/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Theranostic agents can combine photosensitizers and contrast agents into a single unit for photothermal therapy (PTT) and magnetic resonance imaging (MRI). The possibility of treating and diagnosing malignant cancers without any ionizing radiation could become an option. This study investigates the theranostic potential of Fe3O4 nanoparticles (IONs) for the diagnosis and treatment of cancer by developing a single integrated nanoprobe. METHODS Oleylamin-coated IONs (ION-Ol) were synthesized and surface of the IONs was modified using protoporphyrin (PP) and trastuzumab (TZ) to develop the TZ-conjugated SPION-porphyrin [ION-PP-TZ]. The structure, morphology, size, and cytotoxicity of all samples were investigated using Fourier-transform infrared spectroscopy (FT-IR), Transmission electron microscopy (TEM), X-ray powder diffraction (XRD), WST-1 assay, respectively. In addition to MRI and in vitro laser irradiation (808 nm, 200 mW) to determine the r2 values and photothermal ablation. RESULTS The sizes of monodispersed nanoparticles were measured in rang 5.74-7.17 nm. No cytotoxicity was observed after incubating MCF 7 cells under various Fe concentrations of nanoparticles and theranostic agents. The transverse relaxation time of the protoporphyrin conjugated to IONs (52.32 mM-1s-1) exceeded that of ION-Ol and TZ-conjugated ION-PP. In addition, the in vitro photothermal ablation of ION-PP-TZ revealed a 74 % MCF 7 cell reduction after 10 min of at the highest Fe concentration (1.00 mg Fe/mL). CONCLUSIONS In summary, the water-soluble ION-PP-TZ is a promising bimodal agent for the diagnosis and treatment of human epidermal growth factor receptor 2-positive breast cancer cells using a T2 MRI contrast agent and photothermal therapy.
Collapse
Affiliation(s)
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Azlan Abdul Aziz
- School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| | - Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| | - Bita Moradi Khaniabadi
- Child Growth and Development Research Centre, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Baharak Mehrdel
- School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| | - Mahmood Subhi Jameel
- School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
8
|
Darrigues E, Nima ZA, Griffin RJ, Anderson JM, Biris AS, Rodriguez A. 3D cultures for modeling nanomaterial-based photothermal therapy. NANOSCALE HORIZONS 2020; 5:400-430. [PMID: 32118219 DOI: 10.1039/c9nh00628a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Photothermal therapy (PTT) is one of the most promising techniques for cancer tumor ablation. Nanoparticles are increasingly being investigated for use with PTT and can serve as theranostic agents. Based on the ability of near-infrared nano-photo-absorbers to generate heat under laser irradiation, PTT could prove advantageous in certain situations over more classical cancer therapies. To analyze the efficacy of nanoparticle-based PTT, preclinical in vitro studies typically use 2D cultures, but this method cannot completely mimic the complex tumor organization, bioactivity, and physiology that all control the complex penetration depth, biodistribution, and tissue diffusion parameters of nanomaterials in vivo. To fill this knowledge gap, 3D culture systems have been explored for PTT analysis. These models provide more realistic microenvironments that allow spatiotemporal oxygen gradients and cancer cell adaptations to be considered. This review highlights the work that has been done to advance 3D models for cancer microenvironment modeling, specifically in the context of advanced, functionalized nanoparticle-directed PTT.
Collapse
Affiliation(s)
- Emilie Darrigues
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR 72204, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Kalishwaralal K, Luboshits G, Firer MA. Synthesis of Gold Nanoparticle: Peptide-Drug Conjugates for Targeted Drug Delivery. Methods Mol Biol 2020; 2059:145-154. [PMID: 31435919 DOI: 10.1007/978-1-4939-9798-5_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Peptide-drug conjugates (PDCs) are being developed for the targeted delivery of drugs to cancer cells. Several approaches are being followed to enhance their stability in biological solutions. Here we describe an effective method to easily couple PDCs to polyethylene-coated gold nanoparticles. We also outline analytical methods to validate the coupling and assays to measure the stability and cytotoxic efficacy of the conjugates.
Collapse
Affiliation(s)
- K Kalishwaralal
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
- Department of Chemical Engineering (Biotechnology and Materials), Ariel University, Ariel, Israel
| | - G Luboshits
- Department of Chemical Engineering (Biotechnology and Materials), Ariel University, Ariel, Israel
- Ariel Center for Applied Cancer Research, Ariel University, Ariel, Israel
| | - M A Firer
- Department of Chemical Engineering (Biotechnology and Materials), Ariel University, Ariel, Israel.
- Ariel Center for Applied Cancer Research, Ariel University, Ariel, Israel.
- Adelson School of Medicine, Ariel University, Ariel, Israel.
| |
Collapse
|
10
|
Green gold nanoparticles from plant-derived materials: an overview of the reaction synthesis types, conditions, and applications. REV CHEM ENG 2019. [DOI: 10.1515/revce-2018-0051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Many studies have examined metallic nanoparticles (NPs) produced according to the principles of green chemistry. Gold NPs have drawn much more attention than other metallic NPs in recent years. Moreover, among all gold NP synthesis studies, using plant-derived molecules is one of the commonly used reductants in studies on NP synthesis because of its convenience in terms of shape, size control advantage, and nontoxic specifications. The present review focused on studies of the synthesis of gold NP types, including single gold atom NPs, alloyed AU NPs, and core-shell Au NPs as well as their conditions and applications. The effect of those structures on application fields such as catalysis, antifungal action, antibacterial activities, sensors and so on are also summarized. Furthermore, the morphology and synthesis conditions of the primer and secondary NP were discussed. In addition to synthesis methods, characterization methods were analyzed in the context of the considerable diversity of the reducing agents used. As the reducing agents used in most studies, polyphenols and proteins usually play an active role. Finally, the challenges and drawbacks in plant-derived agent usage for the preparation of Au NPs at various industries were also discussed.
Collapse
|