1
|
Bucchieri D, Mangiagalli M, Martani F, Butti P, Lotti M, Serra I, Branduardi P. A novel laccase from Trametes polyzona with high performance in the decolorization of textile dyes. AMB Express 2024; 14:32. [PMID: 38506984 PMCID: PMC10954600 DOI: 10.1186/s13568-024-01687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Laccases are multicopper oxidases able to oxidize several phenolic compounds and find application in numerous industrial applications. Among laccase producers, white-rot fungi represent a valuable source of multiple isoforms and isoenzymes of these multicopper oxidases. Here we describe the identification, biochemical characterization, and application of laccase 2 from Trametes polyzona (TP-Lac2), a basidiomycete fungus emerged among others that have been screened by plate assay. This enzyme has an optimal temperature of 50 °C and in acidic conditions it is able to oxidize both phenolic and non-phenolic compounds. The ability of TP-Lac2 to decolorize textile dyes was tested in the presence of natural and synthetic mediators at 30 °C and 50 °C. Our results indicate that TP-Lac2 most efficiently decolorizes (decolorization rate > 75%) malachite green oxalate, orange G, amido black10B and bromocresol purple in the presence of acetosyringone and 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonate)-ABTS. Overall, the laccase mediator system consisting of TP-Lac2 and the natural mediator acetosyringone has potential as an environmentally friendly alternative for wastewater treatment in the textile industry.
Collapse
Affiliation(s)
- Daniela Bucchieri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
- Department of Material Science and Nanotechnology, CORIMAV Program, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
| | - Francesca Martani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
| | - Pietro Butti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
| | - Immacolata Serra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy.
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milano, Italy
| |
Collapse
|
2
|
Thoa LTK, Thao TTP, Nguyen-Thi ML, Chung ND, Ooi CW, Park SM, Lan TT, Quang HT, Khoo KS, Show PL, Huy ND. Microbial biodegradation of recalcitrant synthetic dyes from textile-enriched wastewater by Fusarium oxysporum. CHEMOSPHERE 2023; 325:138392. [PMID: 36921772 DOI: 10.1016/j.chemosphere.2023.138392] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
The present study reported the improvement of biological treatment for the removal of recalcitrant dyes including aniline blue, reactive black 5, orange II, and crystal violet in contaminated water. The biodegradation efficiency of Fusarium oxysporum was significantly enhanced by the addition of mediators and by adjusting the biomass density and nutrient composition. A supplementation of 1% glucose in culture medium improved the biodegradation efficiency of aniline blue, reactive black 5, orange II, and crystal violet by 2.24, 1.51, 4.46, and 2.1 folds, respectively. Meanwhile, the addition of mediators to culture medium significantly increased the percentages of total removal for aniline blue, reactive black 5, orange II, and crystal violet, reaching 86.07%, 68.29%, 76.35%, and 95.3%, respectively. Interestingly, the fungal culture supplemented with 1% remazol brilliant blue R boosted the biodegradation up to 97.06%, 89.86%, 91.38%, and 86.67% for aniline blue, reactive black 5, orange II, and crystal violet, respectively. Under optimal culture conditions, the fungal culture could degrade these synthetic dyes concentration up to 104 mg/L. The present study demonstrated that different recalcitrant dye types can be efficiently degraded using microorganism such as F. oxysporum.
Collapse
Affiliation(s)
- Le Thi Kim Thoa
- Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | | | - My-Le Nguyen-Thi
- Hearing Research Laboratory, Samsung Medical Center, 06351, Seoul, South Korea
| | - Nguyen Duc Chung
- University of Agriculture and Forestry, Hue University, Hue, 49000, Viet Nam
| | - Chien Wei Ooi
- Chemical Engineering Discipline and Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Seung-Moon Park
- Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Tran Thuy Lan
- Insitute of Biotechnology, Hue University, Hue, 49000, Viet Nam
| | - Hoang Tan Quang
- Insitute of Biotechnology, Hue University, Hue, 49000, Viet Nam
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Nguyen Duc Huy
- Insitute of Biotechnology, Hue University, Hue, 49000, Viet Nam.
| |
Collapse
|
3
|
Sarafpour M, Alihosseini F, Bayat M. New Laccase-Mediated System Utilized for Bio-Discoloration of Indigo-Dyed Denim Fabrics. Appl Biochem Biotechnol 2022; 194:5848-5861. [PMID: 35829904 DOI: 10.1007/s12010-022-04066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
In this study, indigo-dyed denim fabric was decolorized via separate and simultaneous applying of laccase, sodium hydrosulfite, and cellulase. In this regard, the surface reflectance and color coordinates of the discolored fabrics were evaluated and scanning electron microscopy (SEM) images of the cellulase treated fabric were prepared to analyze their surfaces. Finally, the characterization of the treated samples was investigated, including moisture content, crease recovery angle, air permeability, and abrasion resistance. The color experiments showed that simultaneous applying of laccase, sodium hydrosulfite, and cellulose had a 55.79% improvement in the samples' lightness (L*). Furthermore, the color coordinate test of specimens revealed that the hue of the treated samples was changed to blue and green, and the purity of color (C*) was modified. The increment in the moisture content and air permeability of the treated specimens indicated that the comfort of the jeans clothing had been enhanced. As a result, sodium hydrosulfite demonstrates a high-efficiency denim discoloration in the laccase-mediated system.
Collapse
Affiliation(s)
- Mojtaba Sarafpour
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Farzaneh Alihosseini
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Maryam Bayat
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
4
|
Jia Y, Huang Q, Zhu L, Pan C. Characterization of a Recombinant Laccase B from Trametes hirsuta MX2 and Its Application for Decolorization of Dyes. Molecules 2022; 27:1581. [PMID: 35268682 PMCID: PMC8912056 DOI: 10.3390/molecules27051581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Trametes hirsuta is able to secrete laccase isoenzymes including constitutive and inducible forms, and has potential application for bioremediation of environmental pollutants. Here, an inducible group B laccase from T. hirsuta MX2 was heterologously expressed in Pichia pastoris, and its yield reached 2.59 U/mL after 5 days of methanol inducing culture. The optimal pH and temperature of recombinant laccase (rLac1) to 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) were 2.5 and 60 °C, respectively. Metal ions showed different effect on rLac1 which Mg2+, Cu2+, and K+ increased enzyme activity as their concentration increased, whereas Zn2+, Na+, and Fe2+ inhibited enzyme activity as their concentration increased. rLac1 showed good tolerance to organic solvents, and more than 42% of its initial activity remained in 10% organic solvents. Additionally, rLac1 exhibited a more efficient decolorization ability for remazol brilliant blue R (RBBR) than for acid red 1 (AR1), crystal violet (CV), and neutral red (NR). Molecular docking results showed RBBR has a stronger binding affinity with laccase than other dyes by interacting with substrate binding cavity of enzyme. The results indicated rLac1 may be a potential candidate for dye removal from textile wastewater.
Collapse
Affiliation(s)
- Yitong Jia
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.J.); (Q.H.)
| | - Qianqian Huang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.J.); (Q.H.)
| | - Lanlan Zhu
- Science and Technology Service Center of Lin’an, Hangzhou 311300, China
| | - Chengyuan Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.J.); (Q.H.)
| |
Collapse
|
5
|
Sun Y, Liu ZL, Hu BY, Chen QJ, Yang AZ, Wang QY, Li XF, Zhang JY, Zhang GQ, Zhao YC. Purification and Characterization of a Thermo- and pH-Stable Laccase From the Litter-Decomposing Fungus Gymnopus luxurians and Laccase Mediator Systems for Dye Decolorization. Front Microbiol 2021; 12:672620. [PMID: 34413835 PMCID: PMC8369832 DOI: 10.3389/fmicb.2021.672620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
An extracellular laccase (GLL) was purified from fermentation broth of the litter-decomposing fungus Gymnopus luxurians by four chromatography steps, which resulted in a high specific activity of 118.82 U/mg, purification fold of 41.22, and recovery rate of 42.05%. It is a monomeric protein with a molecular weight of 64 kDa and N-terminal amino acid sequence of AIGPV TDLHI, suggesting that GLL is a typical fungal laccase. GLL demonstrated an optimum temperature range of 55°C-65°C and an optimum pH 2.2 toward 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). It displayed considerably high thermostability and pH stability with about 63% activity retained after 24 h at 50°C, and 86% activity retained after 24 h at pH 2.2, respectively. GLL was significantly enhanced in the presence of K+, Na+, and Mg2+ ions. It demonstrated K m of 539 μM and k cat /K m of 140 mM-1⋅s-1 toward ABTS at pH 2.2 and 37°C. Acetosyringone (AS) and syringaldehyde (SA) were the optimal mediators of GLL (0.4 U/ml) for dye decolorization with decolorization rates of about 60%-90% toward 11 of the 14 synthetic dyes. The optimum reaction conditions were determined to be mediator concentration of 0.1 mM, temperature range of 25°C -60°C, and pH 4.0. The purified laccase was the first laccase isolated from genus Gymnopus with high thermostability, pH stability, and effective decolorization toward dyes, suggesting that it has potentials for textile and environmental applications.
Collapse
Affiliation(s)
- Yue Sun
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zi-Lu Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Bo-Yang Hu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Qing-Jun Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ai-Zhen Yang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Qiu-Ying Wang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Xiao-Feng Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Jia-Yan Zhang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, China
| | - Guo-Qing Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yong-Chang Zhao
- Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
6
|
Tapia-Tussell R, Pereira-Patrón A, Alzate-Gaviria L, Lizama-Uc G, Pérez-Brito D, Solis-Pereira S. Decolorization of Textile Effluent by Trametes hirsuta Bm-2 and lac-T as Possible Main Laccase-Contributing Gene. Curr Microbiol 2020; 77:3953-3961. [PMID: 33025181 DOI: 10.1007/s00284-020-02188-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/26/2020] [Indexed: 01/27/2023]
Abstract
The decolorization of dye and textile effluent by Trametes hirsuta was studied in both induced and non-induced media. A removal of 70-100% of the color was achieved through adsorption and the action of laccases. Laccase activity was increased significantly with the addition of grapefruit peel (4000 U/mL) and effluent with grapefruit peel (16,000 U/mL) in comparison with the basal medium (50 U/mL). Analysis of the expression of laccase isoenzymes lac-B and lac-T revealed clear differences in the expression of these genes. The low levels of expression of lac-B in all media suggest a basal or constitutive gene expression, whereas lac-T was over-expressed in the media with effluent, and showed an up/down regulation depending on culture conditions and time. The results obtained suggest that the lac-T gene of T. hirsuta is involved in the decolorization of dyes.
Collapse
Affiliation(s)
- Raul Tapia-Tussell
- Renewable Energy Unit, Centro de Investigacion Cientifica de Yucatán, Carretera Sierra Papacal-Chuburna Puerto Km 5, 97302, Mérida, Yucatán, Mexico
| | - Alejandrina Pereira-Patrón
- Department of Chemical and Biochemical Engineering, Tecnologico Nacional de Mexico/IT de Merida, Av. Tecnologico Km 4.5 S/N, 97118, Mérida, Yucatán, Mexico
| | - Liliana Alzate-Gaviria
- Renewable Energy Unit, Centro de Investigacion Cientifica de Yucatán, Carretera Sierra Papacal-Chuburna Puerto Km 5, 97302, Mérida, Yucatán, Mexico
| | - Gabriel Lizama-Uc
- Department of Chemical and Biochemical Engineering, Tecnologico Nacional de Mexico/IT de Merida, Av. Tecnologico Km 4.5 S/N, 97118, Mérida, Yucatán, Mexico
| | - Daisy Pérez-Brito
- GeMBio Laboratory, Centro de Investigación Científica de Yucatan, Calle 43 No. 130 x 32 y 34. Col. Chuburna de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Sara Solis-Pereira
- Department of Chemical and Biochemical Engineering, Tecnologico Nacional de Mexico/IT de Merida, Av. Tecnologico Km 4.5 S/N, 97118, Mérida, Yucatán, Mexico.
| |
Collapse
|
7
|
Irimia-Vladu M, Kanbur Y, Camaioni F, Coppola ME, Yumusak C, Irimia CV, Vlad A, Operamolla A, Farinola GM, Suranna GP, González-Benitez N, Molina MC, Bautista LF, Langhals H, Stadlober B, Głowacki ED, Sariciftci NS. Stability of Selected Hydrogen Bonded Semiconductors in Organic Electronic Devices. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:6315-6346. [PMID: 32565617 PMCID: PMC7297463 DOI: 10.1021/acs.chemmater.9b01405] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/11/2019] [Indexed: 05/02/2023]
Abstract
The electronics era is flourishing and morphing itself into Internet of Everything, IoE. At the same time, questions arise on the issue of electronic materials employed: especially their natural availability and low-cost fabrication, their functional stability in devices, and finally their desired biodegradation at the end of their life cycle. Hydrogen bonded pigments and natural dyes like indigo, anthraquinone and acridone are not only biodegradable and of bio-origin but also have functionality robustness and offer versatility in designing electronics and sensors components. With this Perspective, we intend to coalesce all the scattered reports on the above-mentioned classes of hydrogen bonded semiconductors, spanning across several disciplines and many active research groups. The article will comprise both published and unpublished results, on stability during aging, upon electrical, chemical and thermal stress, and will finish with an outlook section related to biological degradation and biological stability of selected hydrogen bonded molecules employed as semiconductors in organic electronic devices. We demonstrate that when the purity, the long-range order and the strength of chemical bonds, are considered, then the Hydrogen bonded organic semiconductors are the privileged class of materials having the potential to compete with inorganic semiconductors. As an experimental historical study of stability, we fabricated and characterized organic transistors from a material batch synthesized in 1932 and compared the results to a fresh material batch.
Collapse
Affiliation(s)
- Mihai Irimia-Vladu
- Joanneum
Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
- Mihai
Irimia-Vladu. E-mail:
| | - Yasin Kanbur
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
- Department
of Metallurgical and Materials Engineering, Karabuk University, BaliklarkayasiMevkii, 78050 Karabük, Turkey
| | - Fausta Camaioni
- Joanneum
Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria
- School
of Industrial and Information Engineering, Politecnico di Milano, Via Raffaele Lambruschini, 15, 20156 Milano, Milan, Italy
| | - Maria Elisabetta Coppola
- Joanneum
Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria
- School
of Industrial and Information Engineering, Politecnico di Milano, Via Raffaele Lambruschini, 15, 20156 Milano, Milan, Italy
| | - Cigdem Yumusak
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
| | - Cristian Vlad Irimia
- Joanneum
Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria
- Bundesrealgymnasium
Seebacher, Seebachergasse 11, 8010 Graz, Austria
| | - Angela Vlad
- National
Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomistilor Street, No. 409, Magurele, Bucharest, 077125 Ilfov, Romania
| | - Alessandra Operamolla
- Dipartimento
di Chimica, Università degli Studi
di Bari Aldo Moro, Via E. Orabona 4, I-70126 Bari, Italy
| | - Gianluca M. Farinola
- Dipartimento
di Chimica, Università degli Studi
di Bari Aldo Moro, Via E. Orabona 4, I-70126 Bari, Italy
| | - Gian Paolo Suranna
- Department
of Civil, Environmental and Chemical Engineering (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Natalia González-Benitez
- Department
of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Calle Tulipán s/n, 28933 Móstoles (Madrid), Spain
| | - Maria Carmen Molina
- Department
of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Calle Tulipán s/n, 28933 Móstoles (Madrid), Spain
| | - Luis Fernando Bautista
- Department
of Chemical and Environmental Technology, Rey Juan Carlos University, Calle Tulipán s/n, 28933 Móstoles (Madrid), Spain
| | - Heinz Langhals
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
- Department
Department of Chemistry, Ludwig-Maximilians
University München, Butenandtstr. 13, D-81377 München, Germany
| | - Barbara Stadlober
- Joanneum
Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria
| | - Eric Daniel Głowacki
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
- Linköping
University, Department of Science
and Technology, Laboratory of Organic Electronics, Bredgatan 33, Norrköping 60221, Sweden
| | - Niyazi Serdar Sariciftci
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
| |
Collapse
|