1
|
Capaci P, Barozzi F, Forciniti S, Anglana C, Iuele H, Accogli RA, Carra A, Lenucci MS, del Mercato LL, Di Sansebastiano GP. RITA ® Temporary Immersion System (TIS) for Biomass Growth Improvement and Ex Situ Conservation of Viola ucriana Erben & Raimondo. PLANTS (BASEL, SWITZERLAND) 2024; 13:3530. [PMID: 39771230 PMCID: PMC11676409 DOI: 10.3390/plants13243530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Viola ucriana Erben & Raimondo is a rare and endangered taxon, endemic to a limited area on Mount Pizzuta in northwestern Sicily, Italy. Its population is significantly threatened by anthropogenic activities, including fires, overgrazing, and habitat alterations. Temporary immersion systems (TISs) have proven effective for large-scale propagation in various protected species, offering potential for ex situ conservation and population reinforcement of V. ucriana. This study aimed to establish a bioreactor-based micropropagation protocol for shoot multiplication and compare the efficacy of a TIS with that of conventional solid culture medium (SCM). Three different plant growth regulators (PGRs) were also compared: 6-benzylaminopurine (BA), zeatin, and meta-topolin-9-riboside (mTR). The starting material originated from seeds collected from mother plants in their natural environment. The best growth outcomes (in terms of shoot multiplication, shoot length, and relative growth rate) were achieved using THE RITA® TIS, with BA (0.2 mg/L) and mTR (0.5 or 0.8 mg/L) outperforming SCM. Anomalous or hyperhydric shoots were observed with all zeatin treatments (especially with 0.8 mg/L) in both the TIS and SCM, suggesting that this cytokinin is unsuitable for V. ucriana biomass production. The rooting phase was significantly improved by transferring propagules onto rockwool cubes fertilized with Hoagland solution. This approach yielded more robust roots in terms of number and length compared to the conventional agar-based medium supplemented with indole-3-butyric acid (IBA). Flow cytometry analysis confirmed the genetic fidelity of the regenerants from the optimal PGR treatments, showing that all plantlets maintained the diploid ploidy level of their maternal plants. Over 90% of the in vitro derived plantlets were successfully acclimatized to greenhouse conditions. This paper represents the first report of V. ucriana biomass multiplication using a RITA® bioreactor. The stability of the regenerants, confirmed by nuclei quantification via cytofluorimetry, provides guidance in establishing a true-to-type ex situ population, supporting conservation and future reinforcement efforts.
Collapse
Affiliation(s)
- Piergiorgio Capaci
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy; (P.C.); (F.B.); (C.A.); (R.A.A.); (M.S.L.)
| | - Fabrizio Barozzi
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy; (P.C.); (F.B.); (C.A.); (R.A.A.); (M.S.L.)
| | - Stefania Forciniti
- Institute of Nanotechnology—NANOTEC, Consiglio Nazionale delle Ricerche (CNR), Campus Ecotekne, 73100 Lecce, Italy; (S.F.); (H.I.); (L.L.d.M.)
| | - Chiara Anglana
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy; (P.C.); (F.B.); (C.A.); (R.A.A.); (M.S.L.)
| | - Helena Iuele
- Institute of Nanotechnology—NANOTEC, Consiglio Nazionale delle Ricerche (CNR), Campus Ecotekne, 73100 Lecce, Italy; (S.F.); (H.I.); (L.L.d.M.)
| | - Rita Annunziata Accogli
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy; (P.C.); (F.B.); (C.A.); (R.A.A.); (M.S.L.)
| | - Angela Carra
- Institute of Biosciences and Bioresources, National Research Council (CNR-IBBR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Marcello Salvatore Lenucci
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy; (P.C.); (F.B.); (C.A.); (R.A.A.); (M.S.L.)
| | - Loretta L. del Mercato
- Institute of Nanotechnology—NANOTEC, Consiglio Nazionale delle Ricerche (CNR), Campus Ecotekne, 73100 Lecce, Italy; (S.F.); (H.I.); (L.L.d.M.)
| | - Gian Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy; (P.C.); (F.B.); (C.A.); (R.A.A.); (M.S.L.)
| |
Collapse
|
2
|
Szewczyk A, Trepa M, Zych D. Optimization of the Production of Secondary Metabolites from Furanocoumarin and Furoquinoline Alkaloid Groups in In Vitro Ruta corsica Cultures Grown in Temporary Immersion Bioreactors. Molecules 2024; 29:5261. [PMID: 39598650 PMCID: PMC11596115 DOI: 10.3390/molecules29225261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Ruta corsica is a rare and endemic plant native to Corsica. Due to its limited distribution and the priority to preserve natural sites, has been insufficiently studied. In vitro cultures provide an opportunity to research R. corsica under controlled conditions. In the present study, in vitro cultures of R. corsica were conducted in PlantformTM bioreactors. The study aimed to assess the effects of growth cycle length (5 and 6 weeks) and different concentrations of plant growth regulators (NAA and BAP) at 0.1/0.1, 0.1/0.5, 0.5/0.5, 0.5/1.0, and 1.0/1.0 mg/L on biomass growth and secondary metabolite accumulation. HPLC analysis identified compounds in the furanocoumarin and furoquinoline alkaloid groups, with furanocoumarins being the primary secondary metabolites (maximum total content: 1571.5 mg/100 g DW). Among them, xanthotoxin, psoralen, and bergapten were dominant, with maximum concentrations of 588.1, 426.6, and 325.2 mg/100 g DW, respectively. The maximum total content of furoquinoline alkaloids was 661 mg/100 g DW, with γ-fagarine as the primary metabolite, reaching 448 mg/100 g DW. The optimal conditions for secondary metabolite accumulation in R. corsica cultures were a 5-week growth cycle and the LS 0.1/0.1 medium variant.
Collapse
Affiliation(s)
- Agnieszka Szewczyk
- Department of Medicinal Plant and Mushroom Biotechnology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Monika Trepa
- Department of Medicinal Plant and Mushroom Biotechnology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Dominika Zych
- SSG of Medicinal Plant and Mushroom Biotechnology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
| |
Collapse
|
3
|
Zarbakhsh S, Shahsavar AR, Soltani M. Optimizing PGRs for in vitro shoot proliferation of pomegranate with bayesian-tuned ensemble stacking regression and NSGA-II: a comparative evaluation of machine learning models. PLANT METHODS 2024; 20:82. [PMID: 38822411 PMCID: PMC11143642 DOI: 10.1186/s13007-024-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The process of optimizing in vitro shoot proliferation is a complicated task, as it is influenced by interactions of many factors as well as genotype. This study investigated the role of various concentrations of plant growth regulators (zeatin and gibberellic acid) in the successful in vitro shoot proliferation of three Punica granatum cultivars ('Faroogh', 'Atabaki' and 'Shirineshahvar'). Also, the utility of five Machine Learning (ML) algorithms-Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGB), Ensemble Stacking Regression (ESR) and Elastic Net Multivariate Linear Regression (ENMLR)-as modeling tools were evaluated on in vitro multiplication of pomegranate. A new automatic hyperparameter optimization method named Adaptive Tree Pazen Estimator (ATPE) was developed to tune the hyperparameters. The performance of the models was evaluated and compared using statistical indicators (MAE, RMSE, RRMSE, MAPE, R and R2), while a specific Global Performance Indicator (GPI) was introduced to rank the models based on a single parameter. Moreover, Non‑dominated Sorting Genetic Algorithm‑II (NSGA‑II) was employed to optimize the selected prediction model. RESULTS The results demonstrated that the ESR algorithm exhibited higher predictive accuracy in comparison to other ML algorithms. The ESR model was subsequently introduced for optimization by NSGA‑II. ESR-NSGA‑II revealed that the highest proliferation rate (3.47, 3.84, and 3.22), shoot length (2.74, 3.32, and 1.86 cm), leave number (18.18, 19.76, and 18.77), and explant survival (84.21%, 85.49%, and 56.39%) could be achieved with a medium containing 0.750, 0.654, and 0.705 mg/L zeatin, and 0.50, 0.329, and 0.347 mg/L gibberellic acid in the 'Atabaki', 'Faroogh', and 'Shirineshahvar' cultivars, respectively. CONCLUSIONS This study demonstrates that the 'Shirineshahvar' cultivar exhibited lower shoot proliferation success compared to the other cultivars. The results indicated the good performance of ESR-NSGA-II in modeling and optimizing in vitro propagation. ESR-NSGA-II can be applied as an up-to-date and reliable computational tool for future studies in plant in vitro culture.
Collapse
Affiliation(s)
- Saeedeh Zarbakhsh
- Department of Horticultural Science, College of Agriculture, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Reza Shahsavar
- Department of Horticultural Science, College of Agriculture, Faculty of Agriculture, Shiraz University, Shiraz, Iran.
| | | |
Collapse
|
4
|
Szewczyk A, Marino A, Taviano MF, Cambria L, Davì F, Trepa M, Grabowski M, Miceli N. Studies on the Accumulation of Secondary Metabolites and Evaluation of Biological Activity of In Vitro Cultures of Ruta montana L. in Temporary Immersion Bioreactors. Int J Mol Sci 2023; 24:ijms24087045. [PMID: 37108206 PMCID: PMC10138805 DOI: 10.3390/ijms24087045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The present work focuses on in vitro cultures of Ruta montana L. in temporary immersion PlantformTM bioreactors. The main aim of the study was to evaluate the effects of cultivation time (5 and 6 weeks) and different concentrations (0.1-1.0 mg/L) of plant growth and development regulators (NAA and BAP) on the increase in biomass and the accumulation of secondary metabolites. Consequently, the antioxidant, antibacterial, and antibiofilm potentials of methanol extracts obtained from the in vitro-cultured biomass of R. montana were evaluated. High-performance liquid chromatography analysis was performed to characterize furanocoumarins, furoquinoline alkaloids, phenolic acids, and catechins. The major secondary metabolites in R. montana cultures were coumarins (maximum total content of 1824.3 mg/100 g DM), and the dominant compounds among them were xanthotoxin and bergapten. The maximum content of alkaloids was 561.7 mg/100 g DM. Concerning the antioxidant activity, the extract obtained from the biomass grown on the 0.1/0.1 LS medium variant, with an IC50 0.90 ± 0.03 mg/mL, showed the best chelating ability among the extracts, while the 0.1/0.1 and 0.5/1.0 LS media variants showed the best antibacterial (MIC range 125-500 µg/mL) and antibiofilm activity against resistant Staphylococcus aureus strains.
Collapse
Affiliation(s)
- Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Lucia Cambria
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Federica Davì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
- Foundation "Prof. Antonio Imbesi", University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Monika Trepa
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Mariusz Grabowski
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
5
|
Regni L, Facchin SL, da Silva DF, De Cesaris M, Famiani F, Proietti P, Micheli M. Neem Oil to Reduce Zeatin Use and Optimize the Rooting Phase in Olea europaea L. Micropropagation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030576. [PMID: 36771660 PMCID: PMC9921874 DOI: 10.3390/plants12030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 05/14/2023]
Abstract
Micropropagation is an in vitro propagation technique, established in the nursery field sector for numerous species, which offers several advantages compared to traditional agamic propagation techniques. In the case of the olive tree, however, despite the advances made through research, it is still little used, due to the recalcitrance to in vitro proliferation and/or rooting of many olive cultivars and the high cost of zeatin, the only cytokinin that makes it possible to achieve a satisfactory proliferation rate in this species. In this context, numerous attempts have been made to identify alternative cytokinin compounds able to improve the proliferation rate of olive tree explants and thus reduce the unitary production cost. In particular, there is a growing interest in the use of natural substances (called in some cases "complex mixtures"), which, when added to the in vitro cultivation substrates, seem to be able to improve proliferation rates. In the present study, neem oil was added to the propagation substrates (partially/totally replacing zeatin) and in the rooting phase for the olive cultivar Moraiolo. In particular, in the proliferation phase, the effect of neem oil (0.1 mL L-1) in substrates containing different zeatin concentrations (0, 1, 2, and 4 mg L-1) was evaluated. For the rooting phase, agarized substrate and soil were used with shoots derived from a standard proliferation substrate (4 mg L-1 zeatin) and from the substrate that gave the best results in the proliferation phase (2 mg L-1 zeatin and 0.1 mL L-1 neem oil). In the proliferation phase, the addition of neem oil in the substrates with low zeatin concentration (1 and 2 mg L-1) induced an increase in the number of adventitious shoots and shoots length. On the contrary, the addition of neem oil in the rooting substrates did not positively influence the rooting phase, but positive results especially in terms of root number and length were observed in explants derived from a neem oil-enriched proliferation substrate compared to the control substrate. Therefore, the present study demonstrated for the first time the positive role of neem oil in the proliferation of olive in vitro with low zeatin concentrations.
Collapse
Affiliation(s)
- Luca Regni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
- Correspondence:
| | - Simona Lucia Facchin
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Daniel Fernandes da Silva
- Campus Marechal Cândido Rondon, Universidade Estadual do Oeste do Paraná, Rua Pernambuco 1777, Cascavel 85819-110, Brazil
| | - Michele De Cesaris
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Franco Famiani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Primo Proietti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Maurizio Micheli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| |
Collapse
|
6
|
Aguilar ME, Wang XY, Escalona M, Yan L, Huang LF. Somatic embryogenesis of Arabica coffee in temporary immersion culture: Advances, limitations, and perspectives for mass propagation of selected genotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:994578. [PMID: 36275513 PMCID: PMC9582858 DOI: 10.3389/fpls.2022.994578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Culture in temporary immersion systems (TIS) is a valuable tool for the semi-automation of high frequency somatic embryogenesis of coffee. This system allows the intermittent exposure of explants to liquid medium in cycles of specific frequency and duration of immersion with renewal of the culture atmosphere in each cycle. TIS have revolutionized somatic embryogenesis of coffee plants as an alternative for scaling up and reducing costs associated with labor-intensive solid media culture. In Central America, somatic embryogenesis is employed on a commercial scale to produce F1 Coffea arabica hybrids. In Asia and Africa, somatic embryogenesis is used for the multiplication of selected genotypes of C. arabica and C.canephora. Somatic embryogenesis of coffee plants is considered a model system for woody species due to its biological versatility and low frequency of somaclonal variation. Nevertheless, the success of somatic embryogenesis for mass propagation of coffee plants depends on the development, optimization, and transfer of complementary technologies. Temporary immersion using the RITA® bioreactor is, so far, the best complementary tool for somatic embryogenesis of Arabica coffee for a single recipient with simple changes in liquid media. Likewise, high volume bioreactors, such as 10-L glass BIT® and 10-L flexible disposable plastic bags, have been successfully used for somatic embryogenesis of other coffee species. These bioreactors allow the manipulation of thousands of embryos under semi-automated conditions. The protocols, advantages, and benefits of this technology have been well documented for organogenesis and somatic embryogenesis pathways. However, adaptation in commercial laboratories requires technical and logistical adjustments based on the biological response of the cultures as well as the costs of implementation and production. This review presents the historical and present background of TIS and its commercial application and, in particular, pertinent information regarding temporary immersion culture for C. arabica somatic embryogenesis. The main limitations of this technology, such as hyperhydricity, asynchrony, and developmental abnormalities, are examined, and a critical analysis of current knowledge regarding physiological, biochemical, and molecular aspects of the plant response to temporary immersion is offered. Further, perspectives are provided for understanding and solving the morpho-physiological problems associated with temporary immersion culture of coffee plants. Systematic Review Registration.
Collapse
Affiliation(s)
- María Elena Aguilar
- Biotechnology Laboratories, Tropical Agricultural Research and Higher Education Center (CATIE), Turrialba, Costa Rica
| | - Xiao-yang Wang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, China
| | - Maritza Escalona
- Plant Tissues Culture Lab, Centro de Bioplantas, Universidad Ciego de Ávila, Ciego de Ávila, Cuba
| | - Lin Yan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, China
| | - Li-fang Huang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, China
| |
Collapse
|
7
|
Mirzabe AH, Hajiahmad A, Fadavi A, Rafiee S. Temporary immersion systems (TISs): A comprehensive review. J Biotechnol 2022; 357:56-83. [PMID: 35973641 DOI: 10.1016/j.jbiotec.2022.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
The temporary immersion systems (TISs) have been widely used in plant biotechnology. TISs have different advantages from the point of micropropagation and production of secondary metabolites over other continuous liquid-phase bioreactors. The current work presents the structure, operation mode, configuration type, and micropropagation or secondary metabolite production in TISs. This review deals with the advantages and disadvantages of TISs and the factors affecting their performance. Future research could focus on new designs based on CFD simulation, facilitating sterilization, and combining TISs with other bioreactors (e.g., mist bioreactors) to make a hybrid bioreactor.
Collapse
Affiliation(s)
- Amir Hossein Mirzabe
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Alborz, Iran.
| | - Ali Hajiahmad
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Alborz, Iran.
| | - Ali Fadavi
- Department of Food Technology, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Shahin Rafiee
- Department of Mechanics of Biosystem Engineering, Faculty of Engineering & Technology, College of Agriculture & Natural Resources, University of Tehran, Karaj, Alborz, Iran.
| |
Collapse
|
8
|
Micropropagation of Plum (Prunus domestica L.) in Bioreactors Using Photomixotrophic and Photoautotrophic Conditions. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this study, we propagated two old Galician plum varieties in liquid medium using a temporary immersion system with RITA© bioreactors. Environmental variables including culture system, light intensity, CO2 enrichment, immersion frequency and sucrose supplementation were evaluated in relation to in vitro proliferation, physiological status and ex vitro performance. Bioreactors were superior to jars for culturing shoots in photomixotrophic conditions, producing up to 2 times more shoot numbers and up to 1.7 times more shoot length (depending on the genotype) using shoot clusters. The number and quality of shoots were positively influenced by the sucrose concentration in the medium, plus by the light and gaseous environment. For individual apical sections the best response occurred with 3% sucrose, 150 µmol m−2 s−1 photosynthetic photon flux density and 2000 ppm CO2, averaging 2.5 shoots per explant, 26 mm shoot length and 240 mm2 leaf area, while with 50 µmol m−2 s−1 light and ambient CO2 (400 ppm) values decreased to 1.2 shoots per explant, 14 mm of shoot length and 160 mm2 of leaf area. Shoots cultured photoautotrophically (without sucrose) were successfully rooted and acclimated despite of showing limited growth, low photosynthetic pigments, carbohydrate, phenolic and antioxidant contents during the multiplication phase.
Collapse
|
9
|
Mirzaei L, Yadollahi A, Kermani MJ, Naderpour M, Zeinanloo AA, Farsi M, Davoodi D. Evaluation of genetic stability in olive callus-induced and meristem-induced shoots using flow cytometry and amplified fragment length polymorphism techniques. PLANT METHODS 2021; 17:31. [PMID: 33781291 PMCID: PMC8008589 DOI: 10.1186/s13007-021-00724-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In vitro culture of olive, as an economically valuable tree, has fundamentally a genotype-dependant low micropropagation rate which needs to be improved in already established and newly released cultivars. Various plant tissue culture media, planting systems and growth factors were evaluated in two promissing Iranian olive cultivars 'Amin' and 'Meshkat' and the commercial Spanish cultivar 'Arbequina'. RESULTS The results showed that cultivars have their specific optimal media, i.e. 'Amin' in the MS with 4 mg/L zeatin, 'Arbequina' in the OM with 1 mg/L zeatin, and 'Meshkat' in the OM and MS with 2 mg/L zeatin, which produced significantly a higher number of axillary shoots than other media. The results also indicated a significant improvement in the growth indices of 'Amin' (number of axillary shoots) when cultured using periodical mini bioreactor (PMB) in the VS medium. In comparison with VS, OM did not reveal any significant differences when both culturing systems (PMB and semi-solid media (SSM)) were used. Regarding the effect of carbon source and light intensity, mannitol and 2000 cd sr m-2 greatly enhanced 'Arbequina' growth indices (main shoot length and growth quality). The results of genetic stability of callus induced shoots (CIS) and meristem induced shoots (MIS) revealed that 2C DNA value assessed by partec flow cytometery (FCM) had 0.01, 0.03 and 0.08 pg discrepencies in 'Amin', 'Arbequina' and 'Meshkat', repectively. The Amplified Fragment Length Polymorphism (AFLP) results also indicated that the cultivars were classified regardless of the micropropagation origin (CIS or MIS), except for 'Arbequina'. The AFLP findings showed that 'Arbequina' had the highest dispersal (7-38%) in CIS and MIS, while the Iranian cultivar of 'Meshkat' (5-9%) had the highest stability. CONCLUSIONS This study indicated the importance of in vitro growth parameters for improving the micropropagation indices of olive cultivars. It showed that optimized protocols (OM, PMB, zeatin, mannitol and 2000 cd sr m-2) co-produced larger calli resulting in indirect organogenesis. Based on FCM and AFLP analysis, it can be concluded that true-to-typeness of micropropagated olive was cultivar-dependent.
Collapse
Affiliation(s)
- Leila Mirzaei
- Department of Horticultural Sciences, Faculty of Agriculture, Tarbiat Modares University (TMU), P. O. Box: 14115-111, Tehran, Iran
| | - Abbas Yadollahi
- Department of Horticultural Sciences, Faculty of Agriculture, Tarbiat Modares University (TMU), P. O. Box: 14115-111, Tehran, Iran.
| | - Maryam Jafarkhani Kermani
- Department of Cell and Tissue Culture, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), P. O. Box: 31535-1897, Karaj, Iran
| | - Masoud Naderpour
- Seed and Plant Certification and Registration Research Institute (SPCRI), Agricultural Research, Education and Extension Organization (AREEO), P. O. Box: 31536-1516, Karaj, Iran
| | - Ali Asghar Zeinanloo
- Temperate Fruit Research Center, Agricultural Research, Education and Extension Organization (AREEO), Horticultural Research Institute, P. O. Box: 31585-4119, Karaj, Iran
| | - Maryam Farsi
- Department of Cell and Tissue Culture, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), P. O. Box: 31535-1897, Karaj, Iran
| | - Dariush Davoodi
- Department of Cell and Tissue Culture, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), P. O. Box: 31535-1897, Karaj, Iran
| |
Collapse
|
10
|
Monja-Mio KM, Olvera-Casanova D, Herrera-Alamillo MÁ, Sánchez-Teyer FL, Robert ML. Comparison of conventional and temporary immersion systems on micropropagation (multiplication phase) of Agave angustifolia Haw. ' Bacanora'. 3 Biotech 2021; 11:77. [PMID: 33505832 DOI: 10.1007/s13205-020-02604-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to improve the quality of the micropropagated A. angustifolia Haw. plants cultured in temporary immersion bioreactors (TIS) comparing them with those produced through conventional semisolid-solid tissue culture system (SS). The Recipient for Automated Temporary Immersion (RITA®) bioreactor was used as TIS in this work. The effect of different culture conditions, such as explants density, genotype, and duration of the incubation stages, were analyzed. The growth and morphological parameters measured for the in vitro cultured plants were: plant height, number of new leaves, number of shoots/explants, growth index (GI), dry mass content, and water content. In all experiments, it was observed that plantlets cultivated in the TIS grew larger than those cultivated in SS. Analyzing all the parameters used in this study, the results showed that RITA bioreactor generates a better shoot production and a better GI when using 20 plantlets per container. The number of shoots increased with time of culture (60 days) in both systems. However, the shoots and plantlets cultivated in TIS grew bigger and showed better quality (did not present necrosis in the leaves) than the ones cultured in SS. This study provides experimental evidence that the application of TIS for micropropagation of A. angustifolia is a viable option for the production of high-quality shoots for reforestation purposes.
Collapse
Affiliation(s)
- Kelly M Monja-Mio
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No 130, Chuburná de Hidalgo, 97200 Mérida, Yucatán Mexico
| | - Diego Olvera-Casanova
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No 130, Chuburná de Hidalgo, 97200 Mérida, Yucatán Mexico
| | - Miguel Á Herrera-Alamillo
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No 130, Chuburná de Hidalgo, 97200 Mérida, Yucatán Mexico
| | - Felipe L Sánchez-Teyer
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No 130, Chuburná de Hidalgo, 97200 Mérida, Yucatán Mexico
| | - Manuel L Robert
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No 130, Chuburná de Hidalgo, 97200 Mérida, Yucatán Mexico
| |
Collapse
|
11
|
Large-Scale Plant Production of Lycium barbarum L. by Liquid Culture in Temporary Immersion System and Possible Application to the Synthesis of Bioactive Substance. PLANTS 2020; 9:plants9070844. [PMID: 32635440 PMCID: PMC7412224 DOI: 10.3390/plants9070844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
Goji (Lycium barbarum L.) has recognized nutritive and antioxidant properties and many products are commercialized for health in food market. Besides its food use, goji has been the subject of more than 2000 years of traditional Chinese medicine, using berries, root bark, and leaves. Here, the potential of the liquid culture in temporary immersion system (TIS) by using the bioreactor PlantformTM was tested for the large-scale production of high-quality goji shoots and the subsequent production of total phenols and flavonoids. The three tested immersion cycles differently influenced the shoot quality in terms of proliferation and hyperhydricity. The best immersion cycle (time and frequency) was proven to have the shortest daily immersion time (6 min every 24 h) which ensured good levels of relative growth and multiplication rate, very limited onset of hyperydricity, and the longest shoots, promoting direct rooting after only 30 days of culture. In comparison with the semisolid culture, the TIS culture resulted in an increase of the total phenolic content (TPC) and in a lower value of the total flavonoid content (TFC). However, considering the higher quantity of biomass produced in the PlantformTM bioreactor, the difference in terms of TFC productivity between semisolid medium and TIS liquid culture was proven to be statistically equivalent.
Collapse
|
12
|
Vidal N, Sánchez C. Use of bioreactor systems in the propagation of forest trees. Eng Life Sci 2019; 19:896-915. [PMID: 32624981 PMCID: PMC6999064 DOI: 10.1002/elsc.201900041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/02/2019] [Accepted: 09/18/2019] [Indexed: 01/30/2023] Open
Abstract
Plant biotechnology can be used to conserve the germplasm of natural forests, and to increase the productivity and sustainability of plantations. Both goals imply working with mature trees, which are often recalcitrant to micropropagation. Conventional in vitro culture uses closed containers and gelled medium with sugar supplementation. Bioreactor culture uses liquid medium and usually incorporates aeration. The increased absorption of nutrients via the liquid medium together with the renewal of the air inside the bioreactors may improve the physiological state of the explants. In this review, we will explore the feasibility of using bioreactors to overcome the recalcitrance of many trees to micropropagation and/or to decrease the cost of large-scale propagation. We will focus on the recent use of bioreactors during the multiplication, rooting (plant conversion in the case of somatic embryos), and acclimation stages of the micropropagation of axillary shoots and somatic embryos of forest trees (including some shrubs of commercial interest), in both temporary and continuous immersion systems. We will discuss the advantages and the main obstacles limiting the widespread implementation of bioreactor systems in woody plant culture, considering published scientific reports and contributions from the business sector.
Collapse
Affiliation(s)
- Nieves Vidal
- Instituto de Investigaciones Agrobiológicas de GaliciaCSICSantiago de CompostelaSpain
| | - Conchi Sánchez
- Instituto de Investigaciones Agrobiológicas de GaliciaCSICSantiago de CompostelaSpain
| |
Collapse
|
13
|
In Vitro Regeneration of Capparis spinosa L. by Using a Temporary Immersion System. PLANTS 2019; 8:plants8060177. [PMID: 31208122 PMCID: PMC6630581 DOI: 10.3390/plants8060177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 11/30/2022]
Abstract
Three caper (Capparis spinosa L.) biotypes grown on the Sicilian island of Salina (38°33′49″ N) were micropropagated to evaluate two different in vitro culture systems: one using the traditional solid medium, and the other based on liquid culture in a PlantForm bioreactor. PlantForm is a temporary immersion system (TIS), a new propagation method in which the shoots undergo temporary immersion in a liquid medium in order to avoid the accumulation of gas through forced ventilation. This study proposes a protocol to improve the efficiency of in vitro propagation of caper plants, while also reducing production costs, because of the elimination of the gelling agent, and manual labor, requiring limited subcultures and posing minimal contamination risks. Our results show that the caper shoots propagated in bioreactors demonstrated good adaptability and better growth rates than those grown in the conventional system. Statistically significant differences were observed between plants grown in the PlantForm liquid culture and those grown in solid medium regarding the number and length of shoots, which were further promoted by the addition of plant growth regulators (PGRs). The relative growth and real proliferation rate of the caper explants were higher when using meta-Topolin than when using 6-benzylaminopurine as a PGR. Overall, the TIS improved in vitro caper culture by promoting the proliferation, length, and vigor of the shoots.
Collapse
|