1
|
Gao W, Yan Y, Guan Z, Zhang J, Chen W. Effects of Bacillus coagulans TBC169 on gut microbiota and metabolites in gynecological laparoscopy patients. Front Microbiol 2024; 15:1284402. [PMID: 38596369 PMCID: PMC11002114 DOI: 10.3389/fmicb.2024.1284402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Objective The primary objective of this study is to investigate the mechanism by which Bacillus coagulans TBC169 accelerates intestinal function recovery in patients who have undergone gynecological laparoscopic surgery, using metabolomics and gut microbiota analysis. Methods A total of 20 subjects were selected and randomly divided into two groups: the intervention group (n = 10) receiving Bacillus coagulans TBC169 Tablets (6 pills, 1.05 × 108 CFU), and the control group (n = 10) receiving placebos (6 pills). After the initial postoperative defecation, fecal samples were collected from each subject to analyze their gut microbiota and metabolic profiles by high-throughput 16S rRNA gene sequencing analysis and untargeted metabonomic. Results There were no statistically significant differences observed in the α-diversity and β-diversity between the two groups; however, in the intervention group, there was a significant reduction in the relative abundance of unclassified_Enterobacteriaceae at the genus level. Furthermore, the control group showed increased levels of Holdemanella and Enterobacter, whereas the intervention group exhibited elevated levels of Intestinimonas. And administration of Bacillus coagulans TBC169 led to variations in 2 metabolic pathways: D-glutamine and D-glutamate metabolism, and arginine biosynthesis. Conclusion This study demonstrated that consuming Bacillus coagulans TBC169 after gynecological laparoscopic surgery might inhibit the proliferation of harmful Enterobacteriaceae; mainly influence 2 pathways including D-glutamine and D-glutamate metabolism, and arginine biosynthesis; and regulate metabolites related to immunity and intestinal motility; which can help regulate immune function, maintain intestinal balance, promote intestinal peristalsis, and thus accelerate the recovery of intestinal function.
Collapse
Affiliation(s)
- Weiqi Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Yan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Zhaobo Guan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jingmin Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Tossetta G, Marzioni D. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers. Eur J Pharmacol 2023; 941:175503. [PMID: 36641100 DOI: 10.1016/j.ejphar.2023.175503] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cervical and endometrial cancers are among the most dangerous gynaecological malignancies, with high fatality and recurrence rates due to frequent diagnosis at an advanced stage and chemoresistance onset. The NRF2/KEAP1 signalling pathway plays an important role in protecting cells against oxidative damage due to increased reactive oxygen species (ROS) levels. NRF2, activated by ROS, induces the expression of antioxidant enzymes such as heme oxygenase, catalase, glutathione peroxidase and superoxide dismutase which neutralize ROS, protecting cells against oxidative stress damage. However, activation of NRF2/KEAP1 signalling in cancer cells results in chemoresistance, inactivating drug-mediated oxidative stress and protecting cancer cells from drug-induced cell death. We review the literature on the role of the NRF2/KEAP1 pathway in cervical and endometrial cancers, with a focus on the expression of its components and downstream genes. We also examine the role of the NRF2/KEAP1 pathway in chemotherapy resistance and how this pathway can be modulated by natural and synthetic modulators.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| |
Collapse
|
3
|
Evaluation of indole-picolinamide hybrid molecules as carbonic anhydrase-II inhibitors: Biological and computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Cruz-Gregorio A, Aranda-Rivera AK, Pedraza-Chaverri J. Nuclear factor erythroid 2-related factor 2 in human papillomavirus-related cancers. Rev Med Virol 2021; 32:e2308. [PMID: 34694662 DOI: 10.1002/rmv.2308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023]
Abstract
High-risk human papillomavirus (HR-HPV) infection is a necessary cause for the development of cervical cancer. Moreover, HR-HPV is also associated with cancers in the anus, vagina, vulva, penis and oropharynx. HR-HPVs target and modify the function of different cell biomolecules, such as glucose, amino acids, lipids and transcription factors (TF), such as p53, nuclear factor erythroid 2-related factor 2 (Nrf2), among others. The latter is a master TF that maintains redox homeostasis. Nrf2 also induces the transcription of genes associated with cell detoxification. Since both processes are critical for cell physiology, Nrf2 deregulation is associated with cancer development. Nrf2 is a crucial molecule in HPV-related cancer development but underexplored. Moreover, Nrf2 activation is also associated with resistance to chemotherapy and radiotherapy in these cancers. This review focusses on the importance of Nrf2 during HPV-related cancer development, resistance to therapy and potential therapies associated with Nrf2 as a molecular target.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Ana Karina Aranda-Rivera
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - José Pedraza-Chaverri
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| |
Collapse
|
5
|
Adeola HA, Bano A, Vats R, Vashishtha A, Verma D, Kaushik D, Mittal V, Rahman MH, Najda A, Albadrani GM, Sayed AA, Farouk SM, Hassanein EHM, Akhtar MF, Saleem A, Abdel-Daim MM, Bhardwaj R. Bioactive compounds and their libraries: An insight into prospective phytotherapeutics approach for oral mucocutaneous cancers. Biomed Pharmacother 2021; 141:111809. [PMID: 34144454 DOI: 10.1016/j.biopha.2021.111809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Oral mucocutaneous cancers (OMCs) are cancers that affect both the oral mucosa and perioral cutaneous structures. Common OMCs are squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and malignant melanoma (MM). Anatomical similarities and conventions which categorizes these lesions blur the magnitude of OMCs in diverse populations. The burden of OMC is high in the sub-Saharan Africa and Indian subcontinents, and the cost of management is prohibitive in the resource-limited, developing world. Hence, there is a pressing demand for the use of cost-effective in silico approaches to identify diagnostic tools and treatment targets for diseases with high burdens in these regions. Due to their ubiquitousness and accessibility, the use of therapeutic efficacy of plant bioactive compounds in the management of OMC is both appropriate and plausible. Furthermore, screening known mechanistic disease targets with well annotated plant bioactive compound libraries is poised to improve the routine management of OMCs provided that the requisite access to database resources are available and accessible. Using natural products minimizes the side effects and morbidities associated with conventional therapies. The development of innovative treatments approaches would tremendously benefit the African and Indian populace and reduce the mortalities associated with OMCs in the developing world. Hence, we discuss herein, the potential benefits, opportunities and challenges of using bioactive compound libraries in the management of OMCs.
Collapse
Affiliation(s)
- Henry A Adeola
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape and Tygerberg Hospital, Cape Town, South Africa; Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Amit Vashishtha
- Deptartment Of Botany, Sri Venkateswara college, University of Delhi, India.
| | | | - Deepak Kaushik
- Department of Pharmaceutical sciences, Maharshi Dayanand University Rohtak, 124001, India.
| | - Vineet Mittal
- Department of Pharmaceutical sciences, Maharshi Dayanand University Rohtak, 124001, India.
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants University of Life Sciences in Lublin 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Sameh M Farouk
- Cytology and Histology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan.
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
6
|
Lin Q, Jin HJ, Zhang D, Gao L. DDX46 silencing inhibits cell proliferation by activating apoptosis and autophagy in cutaneous squamous cell carcinoma. Mol Med Rep 2020; 22:4236-4242. [PMID: 33000271 PMCID: PMC7533510 DOI: 10.3892/mmr.2020.11509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
DEAD-Box Helicase 46 (DDX46) is an ATP-dependent RNA helicase that plays a central role in transcription splicing and ribosome assembly. However, the role of DDX46 in cutaneous squamous cell carcinoma (CSCC) remains to be elucidated. The aim of the present study was to investigate the role of DDX46 in CSCC by assessing DDX46 expression levels in CSCC tissues and cell lines. The effect of DDX46 silencing on CSCC cell proliferation, apoptosis and autophagy were also analyzed. It was demonstrated that DDX46 was significantly overexpressed in CSCC tissues and cells (P<0.05). Furthermore, it was found that DDX46 silencing could dramatically inhibit cell proliferation (P<0.05). Moreover, cell apoptosis and autophagy were activated in DDX46 silencing groups (P<0.05). Therefore, the present results suggested that DDX46 was overexpressed in CSCC and that DDX46 silencing can inhibit cell proliferation by inducing apoptosis and activating autophagy. Thus, DDX46 may serve as a novel potential therapeutic target for CSCC.
Collapse
Affiliation(s)
- Quan Lin
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hong-Juan Jin
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Duo Zhang
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ling Gao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
7
|
Shah HS, Usman F, Ashfaq–Khan M, Khalil R, Ul-Haq Z, Mushtaq A, Qaiser R, Iqbal J. Preparation and characterization of anticancer niosomal withaferin–A formulation for improved delivery to cancer cells: In vitro, in vivo, and in silico evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|