1
|
Todd OE, Simpson S, Scheffler B, Dorn KM. A fully phased, chromosome-scale genome of sugar beet line FC309 enables the discovery of Fusarium yellows resistance QTL. DNA Res 2024; 32:dsae032. [PMID: 39589284 PMCID: PMC11747354 DOI: 10.1093/dnares/dsae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/16/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024] Open
Abstract
Sugar beet (Beta vulgaris L.) is a global source of table sugar and animal fodder. Here we report a highly contiguous, haplotype phased genome assembly and annotation for sugar beet line FC309. Both assembled haplomes for FC309 represent the largest and most contiguous assembled beet genomes reported to date, as well as gene annotations sets that capture over 1,500 additional protein-coding loci compared to prior beet genome annotations. These new genomic resources were used to identify novel quantitative trait loci (QTL) for Fusarium yellows resistance from the FC309 genetic background using an F2 mapping-by-sequencing approach. The highest QTL signals were detected on Chromosome 3, spanning approximately 10Mbp in both haplomes. A parallel transcriptome profiling experiment identified candidate genes within the Chromosome 3 QTL with plausible roles in disease response, including NBS-LRR genes with expression trends supporting a role in resistance. Investigation of genetic variants in these candidate genes found 1 major disease-resistance protein containing high-effect variants of interest. Collectively, the genomic resources for FC309 presented here are foundational tools for comparative genomics, mapping other traits in the FC309 background, and as a reference genome for other beet studies due to its contiguity, completeness, and high-quality gene annotations.
Collapse
Affiliation(s)
- Olivia E Todd
- USDA-ARS, Soil Management and Sugar Beet Research Unit, Fort Collins, CO 80525, USA
| | - Sheron Simpson
- USDA-ARS, Genomics and Bioinformatics Research Unit, Stoneville, MS 38776, USA
| | - Brian Scheffler
- USDA-ARS, Genomics and Bioinformatics Research Unit, Stoneville, MS 38776, USA
| | - Kevin M Dorn
- USDA-ARS, Soil Management and Sugar Beet Research Unit, Fort Collins, CO 80525, USA
| |
Collapse
|
2
|
Kan W, Chen L, Wang B, Liu L, Yin F, Zhong Q, Li J, Zhang D, Xiao S, Zhang Y, Jiang C, Yu T, Wang Y, Cheng Z. Examination of the Expression Profile of Resistance Genes in Yuanjiang Common Wild Rice ( Oryza rufipogon). Genes (Basel) 2024; 15:924. [PMID: 39062703 PMCID: PMC11275508 DOI: 10.3390/genes15070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The rice blight poses a significant threat to the rice industry, and the discovery of disease-resistant genes is a crucial strategy for its control. By exploring the rich genetic resources of Yuanjiang common wild rice (Oryza rufipogon) and analyzing their expression patterns, genetic resources can be provided for molecular rice breeding. The target genes' expression patterns, subcellular localization, and interaction networks were analyzed based on the annotated disease-resistant genes on the 9th and 10th chromosomes in the rice genome database using fluorescent quantitative PCR technology and bioinformatics tools. Thirty-three disease-resistant genes were identified from the database, including 20 on the 9th and 13 on the 10th. These genes were categorized into seven subfamilies of the NLR family, such as CNL and the G subfamily of the ABC family. Four genes were not expressed under the induction of the pathogen Y8, two genes were significantly down-regulated, and the majority were up-regulated. Notably, the expression levels of nine genes belonging to the ABCG, CN, and CNL classes were significantly up-regulated, yet the expression levels varied among roots, stems, and leaves; one was significantly expressed in the roots, one in the stems, and the remaining seven were primarily highly expressed in the leaves. Two interaction network diagrams were predicted based on the seven highly expressed genes in the leaves: complex networks regulated by CNL proteins and specific networks controlled by ABCG proteins. The disease-resistant genes on the 9th chromosome are actively expressed in response to the induction of rice blight, forming a critical gene pool for the resistance of Yuanjiang common wild rice (O. rufipogon) to rice blight. Meanwhile, the disease-resistant genes on the 10th chromosome not only participate in resisting the rice blight pathogen but may also be involved in the defense against other stem diseases.
Collapse
Affiliation(s)
- Wang Kan
- College of Plant Protection, Yunnan Agricultural University, Kunming 650224, China;
| | - Ling Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Bo Wang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Li Liu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Fuyou Yin
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Qiaofang Zhong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Jinlu Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Dunyu Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Suqin Xiao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Yun Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Cong Jiang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Tengqiong Yu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| | - Yunyue Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming 650224, China;
| | - Zaiquan Cheng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Lab of Agricultural Biotechnology/Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China; (L.C.); (B.W.); (L.L.); (F.Y.); (Q.Z.); (J.L.); (D.Z.); (S.X.); (Y.Z.); (C.J.); (T.Y.)
| |
Collapse
|
3
|
Cao Y, Mo W, Li Y, Xiong Y, Wang H, Zhang Y, Lin M, Zhang L, Li X. Functional characterization of NBS-LRR genes reveals an NBS-LRR gene that mediates resistance against Fusarium wilt. BMC Biol 2024; 22:45. [PMID: 38408951 PMCID: PMC10898138 DOI: 10.1186/s12915-024-01836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Most disease resistance (R) genes in plants encode proteins that contain leucine-rich-repeat (LRR) and nucleotide-binding site (NBS) domains, which belong to the NBS-LRR family. The sequenced genomes of Fusarium wilt-susceptible Vernicia fordii and its resistant counterpart, Vernicia montana, offer significant resources for the functional characterization and discovery of novel NBS-LRR genes in tung tree. RESULTS Here, we identified 239 NBS-LRR genes across two tung tree genomes: 90 in V. fordii and 149 in V. montana. Five VmNBS-LRR paralogous were predicted in V. montana, and 43 orthologous were detected between V. fordii and V. montana. The orthologous gene pair Vf11G0978-Vm019719 exhibited distinct expression patterns in V. fordii and V. montana: Vf11G0978 showed downregulated expression in V. fordii, while its orthologous gene Vm019719 demonstrated upregulated expression in V. montana, indicating that this pair may be responsible for the resistance to Fusarium wilt in V. montana. Vm019719 from V. montana, activated by VmWRKY64, was shown to confer resistance to Fusarium wilt in V. montana by a virus-induced gene silencing (VIGS) experiment. However, in the susceptible V. fordii, its allelic counterpart, Vf11G0978, exhibited an ineffective defense response, attributed to a deletion in the promoter's W-box element. CONCLUSIONS This study provides the first systematic analysis of NBS-LRR genes in the tung tree and identifies a candidate gene that can be utilized for marker-assisted breeding to control Fusarium wilt in V. fordii.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China.
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Wanzhen Mo
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yanli Li
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yao Xiong
- Forestry College, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Han Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yingjie Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Mengfei Lin
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330224, China.
| | - Lin Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China.
- Hubei Shizhen Laboratory, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing, 102209, China.
| |
Collapse
|
4
|
Zhang H, Liu X, Zhou J, Strelkov SE, Fredua-Agyeman R, Zhang S, Li F, Li G, Wu J, Sun R, Hwang SF, Zhang S. Identification of Clubroot ( Plasmodiophora brassicae) Resistance Loci in Chinese Cabbage ( Brassica rapa ssp. pekinensis) with Recessive Character. Genes (Basel) 2024; 15:274. [PMID: 38540333 PMCID: PMC10970103 DOI: 10.3390/genes15030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 06/15/2024] Open
Abstract
The soil-borne pathogen Plasmodiophora brassicae is the causal agent of clubroot, a major disease in Chinese cabbage (Brassica rapa ssp. pekinensis). The host's resistance genes often confer immunity to only specific pathotypes and may be rapidly overcome. Identification of novel clubroot resistance (CR) from germplasm sources is necessary. In this study, Bap246 was tested by being crossed with different highly susceptible B. rapa materials and showed recessive resistance to clubroot. An F2 population derived from Bap246 × Bac1344 was used to locate the resistance Quantitative Trait Loci (QTL) by Bulk Segregant Analysis Sequencing (BSA-Seq) and QTL mapping methods. Two QTL on chromosomes A01 (4.67-6.06 Mb) and A08 (10.42-11.43 Mb) were found and named Cr4Ba1.1 and Cr4Ba8.1, respectively. Fifteen and eleven SNP/InDel markers were used to narrow the target regions in the larger F2 population to 4.67-5.17 Mb (A01) and 10.70-10.84 Mb (A08), with 85 and 19 candidate genes, respectively. The phenotypic variation explained (PVE) of the two QTL were 30.97% and 8.65%, respectively. Combined with gene annotation, mutation site analysis, and real-time quantitative polymerase chain reaction (qRT-PCR) analysis, one candidate gene in A08 was identified, namely Bra020861. And an insertion and deletion (InDel) marker (co-segregated) named Crr1-196 was developed based on the gene sequence. Bra013275, Bra013299, Bra013336, Bra013339, Bra013341, and Bra013357 in A01 were the candidate genes that may confer clubroot resistance in Chinese cabbage. The resistance resource and the developed marker will be helpful in Brassica breeding programs.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Xitong Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Jinyan Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (S.E.S.); (R.F.-A.)
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (S.E.S.); (R.F.-A.)
| | - Shifan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Fei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Guoliang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Rifei Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (S.E.S.); (R.F.-A.)
| | - Shujiang Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (X.L.); (J.Z.); (S.Z.); (F.L.); (G.L.); (J.W.); (R.S.)
| |
Collapse
|
5
|
Yin L, Zhang G, Zhou C, Ou Z, Qu B, Zhao H, Zuo E, Liu B, Wan F, Qian W. Chromosome-level genome of Ambrosia trifida provides insights into adaptation and the evolution of pollen allergens. Int J Biol Macromol 2024; 259:129232. [PMID: 38191104 DOI: 10.1016/j.ijbiomac.2024.129232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Ambrosia trifida (giant ragweed) is an invasive plant that can cause serious damage to natural ecosystems and severe respiratory allergies. However, the genomic basis of invasive adaptation and pollen allergens in Ambrosia species remain largely unknown. Here, we present a 1.66 Gb chromosome-scale reference genome for giant ragweed and identified multiple types of genome duplications, which are responsible for its rapid environmental adaptation and pollen development. The largest copies number and species-specific expansions of resistance-related gene families compared to Heliantheae alliance might contribute to resist stresses, pathogens and rapid adaptation. To extend the knowledge of evolutionary process of allergic pollen proteins, we predicted 26 and 168 potential pollen allergen candidates for giant ragweed and other Asteraceae plant species by combining machine learning and identity screening. Interestingly, we observed a specific tandemly repeated array for potential allergenic pectate lyases among Ambrosia species. Rapid evolutionary rates on putative pectate lyase allergens may imply a crucial role of nonsynonymous mutations on amino acid residues for plant biological function and allergenicity. Altogether, this study provides insight into the molecular ecological adaptation and putative pollen allergens prediction that will be helpful in promoting invasion genomic research and evolution of putative pollen allergy in giant ragweed.
Collapse
Affiliation(s)
- Lijuan Yin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guangzhong Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chikai Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, China
| | - Zhenghui Ou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bo Qu
- Liaoning Key Laboratory for Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang 110016, Liaoning Province, China
| | - Haoyu Zhao
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
6
|
Wang C, Tang Y, Li Y, Hu C, Li J, Lyu A. Genome-wide identification and bioinformatics analysis of the WD40 transcription factor family and candidate gene screening for anthocyanin biosynthesis in Rhododendron simsii. BMC Genomics 2023; 24:488. [PMID: 37633914 PMCID: PMC10463391 DOI: 10.1186/s12864-023-09604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
WD40 transcription factors (TFs) constitute a large gene family in eukaryotes, playing diverse roles in cellular processes. However, their functions in the major ornamental plant, Rhododendron simsii, remain poorly understood. In this study, we identified 258 WD40 proteins in the R. simsii genome, which exhibited an uneven distribution across chromosomes. Based on domain compositions and phylogenetic analysis, we classified these 258 RsWD40 proteins into 42 subfamilies and 47 clusters. Comparative genomic analysis suggested that the expansion of the WD40 gene family predates the divergence of green algae and higher plants, indicating an ancient origin. Furthermore, by analyzing the duplication patterns of RsWD40 genes, we found that transposed duplication played a major role in their expansion. Notably, the majority of RsWD40 gene duplication pairs underwent purifying selection during evolution. Synteny analysis identified significant orthologous gene pairs between R. simsii and Arabidopsis thaliana, Oryza sativa, Vitis vinifera, and Malus domestica. We also investigated potential candidate genes involved in anthocyanin biosynthesis during different flower development stages in R. simsii using RNA-seq data. Specifically, we identified 10 candidate genes during the bud stage and 7 candidate genes during the full bloom stage. GO enrichment analysis of these candidate genes revealed the potential involvement of the ubiquitination process in anthocyanin biosynthesis. Overall, our findings provide a valuable foundation for further investigation and functional analysis of WD40 genes, as well as research on the molecular mechanisms underlying anthocyanin biosynthesis in Rhododendron species.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Yafang Tang
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Yan Li
- Department of Biology and Chemical Engineering, Weihai Vocational College, Weihai, 264200, China
| | - Chao Hu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Jingyi Li
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Ang Lyu
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Science, Wuhan, 430064, China.
| |
Collapse
|
7
|
Nguyen TTT, Bae EK, Tran TNA, Lee H, Ko JH. Exploring the Seasonal Dynamics and Molecular Mechanism of Wood Formation in Gymnosperm Trees. Int J Mol Sci 2023; 24:ijms24108624. [PMID: 37239969 DOI: 10.3390/ijms24108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Forests, comprising 31% of the Earth's surface, play pivotal roles in regulating the carbon, water, and energy cycles. Despite being far less diverse than angiosperms, gymnosperms account for over 50% of the global woody biomass production. To sustain growth and development, gymnosperms have evolved the capacity to sense and respond to cyclical environmental signals, such as changes in photoperiod and seasonal temperature, which initiate growth (spring and summer) and dormancy (fall and winter). Cambium, the lateral meristem responsible for wood formation, is reactivated through a complex interplay among hormonal, genetic, and epigenetic factors. Temperature signals perceived in early spring induce the synthesis of several phytohormones, including auxins, cytokinins, and gibberellins, which in turn reactivate cambium cells. Additionally, microRNA-mediated genetic and epigenetic pathways modulate cambial function. As a result, the cambium becomes active during the summer, resulting in active secondary xylem (i.e., wood) production, and starts to become inactive in autumn. This review summarizes and discusses recent findings regarding the climatic, hormonal, genetic, and epigenetic regulation of wood formation in gymnosperm trees (i.e., conifers) in response to seasonal changes.
Collapse
Affiliation(s)
- Thi Thu Tram Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun-Kyung Bae
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Thi Ngoc Anh Tran
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyoshin Lee
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
8
|
Wang C, Ye D, Li Y, Hu P, Xu R, Wang X. Genome-wide identification and bioinformatics analysis of the WRKY transcription factors and screening of candidate genes for anthocyanin biosynthesis in azalea ( Rhododendron simsii). Front Genet 2023; 14:1172321. [PMID: 37234867 PMCID: PMC10206045 DOI: 10.3389/fgene.2023.1172321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
WRKY transcription factors have been demonstrated to influence the anthocyanin biosynthesis in many plant species. However, there is limited knowledge about the structure and function of WRKY genes in the major ornamental plant azalea (Rhododendron simsii). In this study, we identified 57 RsWRKY genes in the R. simsii genome and classified them into three main groups and several subgroups based on their structural and phylogenetic characteristics. Comparative genomic analysis suggested WRKY gene family has significantly expanded during plant evolution from lower to higher species. Gene duplication analysis indicated that the expansion of the RsWRKY gene family was primarily due to whole-genome duplication (WGD). Additionally, selective pressure analysis (Ka/Ks) suggested that all RsWRKY duplication gene pairs underwent purifying selection. Synteny analysis indicated that 63 and 24 pairs of RsWRKY genes were orthologous to Arabidopsis thaliana and Oryza sativa, respectively. Furthermore, RNA-seq data was used to investigate the expression patterns of RsWRKYs, revealing that 17 and 9 candidate genes may be associated with anthocyanin synthesis at the bud and full bloom stages, respectively. These findings provide valuable insights into the molecular mechanisms underlying anthocyanin biosynthesis in Rhododendron species and lay the foundation for future functional studies of WRKY genes.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Dan Ye
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Yan Li
- Department of Biology and Chemical Engineering, Weihai Vocational College, Weihai, China
| | - Peiling Hu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Run Xu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Xiaojing Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| |
Collapse
|
9
|
Resource Screening and Inheritance Analysis of Fusarium oxysporum sp. conglutinans Race 2 Resistance in Cabbage ( Brassica oleracea var. capitata). Genes (Basel) 2022; 13:genes13091590. [PMID: 36140758 PMCID: PMC9498596 DOI: 10.3390/genes13091590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cabbage (Brassica oleracea var. capitata) Fusarium wilt (CFW) is a disease that poses a critical threat to global cabbage production. Screening for resistant resources in order to support the breeding of resistant cultivars is the most reliable approach to control this disease. CFW is caused by Fusarium oxysporum f. sp. conglutinans (Foc), which consists of two physiological races (race 1 and 2). While many studies have focused on resistance screening, gene mining, and inheritance-based research associated with resistance to Foc race 1, there have been few studies specifically analyzing resistance to Foc race 2, which is a potential threat that can overcome type A resistance. Here, 166 cabbage resources collected from around the world were evaluated for the resistance to both Foc races, with 46.99% and 38.55% of these cabbage lines being resistant to Foc race 1 and race 2, respectively, whereas 33.74% and 48.80% were susceptible to these two respective races. Of these 166 analyzed cabbage lines, 114 (68.67%) were found to be more susceptible to race 2 than to race 1, and 28 of them were resistant to race 1 while susceptible to race 2, underscoring the highly aggressive nature of Foc race 2. To analyze the inheritance of Foc race 2 resistance, segregated populations derived from the resistant parental line 'Badger Inbred 16' and the susceptible one '01-20' were analyzed with a major gene plus polygene mixed genetic model. The results of this analysis revealed Foc race 2-specific resistance to be under the control of two pairs of additive-dominant-epistatic major genes plus multiple additive-dominant-epistatic genes (model E). The heritability of these major genes in the BC1P1, BC1P2, and F2 generations were 32.14%, 72.80%, and 70.64%, respectively. In summary, these results may aid in future gene mining and breeding of novel CFW-resistant cabbage cultivars.
Collapse
|
10
|
Zhang W, Yuan Q, Wu Y, Zhang J, Nie J. Genome-Wide Identification and Characterization of the CC-NBS-LRR Gene Family in Cucumber ( Cucumis sativus L.). Int J Mol Sci 2022; 23:ijms23095048. [PMID: 35563438 PMCID: PMC9099878 DOI: 10.3390/ijms23095048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022] Open
Abstract
The NBS-LRR (NLR) gene family plays a pivotal role in regulating disease defense response in plants. Cucumber is one of the most important vegetable crops in the world, and various plant diseases, including powdery mildew (PM), cause severe losses in both cucumber productivity and quality annually. To characterize and understand the role of the CC-NBS-LRR(CNL) family of genes in disease defense response in cucumber plants, we performed bioinformatical analysis to characterize these genes systematically. We identified 33 members of the CNL gene family in cucumber plants, and they are distributed on each chromosome with chromosome 4 harboring the largest cluster of five different genes. The corresponding CNL family member varies in the number of amino acids and exons, molecular weight, theoretical isoelectric point (pI) and subcellular localization. Cis-acting element analysis of the CNL genes reveals the presence of multiple phytohormone, abiotic and biotic responsive elements in their promoters, suggesting that these genes might be responsive to plant hormones and stress. Phylogenetic and synteny analysis indicated that the CNL proteins are conserved evolutionarily in different plant species, and they can be divided into four subfamilies based on their conserved domains. MEME analysis and multiple sequence alignment showed that conserved motifs exist in the sequence of CNLs. Further DNA sequence analysis suggests that CsCNL genes might be subject to the regulation of different miRNAs upon PM infection. By mining available RNA-seq data followed by real-time quantitative PCR (qRT-PCR) analysis, we characterized expression patterns of the CNL genes, and found that those genes exhibit a temporospatial expression pattern, and their expression is also responsive to PM infection, ethylene, salicylic acid, and methyl jasmonate treatment in cucumber plants. Finally, the CNL genes targeted by miRNAs were predicted in cucumber plants. Our results in this study provided some basic information for further study of the functions of the CNL gene family in cucumber plants.
Collapse
Affiliation(s)
- Wanlu Zhang
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China
| | - Qi Yuan
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China
| | - Yiduo Wu
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
| | - Jing Zhang
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
| | - Jingtao Nie
- College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China; (W.Z.); (Q.Y.); (Y.W.); (J.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang AF University, Hangzhou 311300, China
- Correspondence:
| |
Collapse
|
11
|
Xu X, Chen Y, Li B, Zhang Z, Qin G, Chen T, Tian S. Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens. HORTICULTURE RESEARCH 2022; 9:uhac066. [PMID: 35591926 PMCID: PMC9113409 DOI: 10.1093/hr/uhac066] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 05/21/2023]
Abstract
The horticultural industry helps to enrich and improve the human diet while contributing to growth of the agricultural economy. However, fungal diseases of horticultural crops frequently occur during pre- and postharvest periods, reducing yields and crop quality and causing huge economic losses and wasted food. Outcomes of fungal diseases depend on both horticultural plant defense responses and fungal pathogenicity. Plant defense responses are highly sophisticated and are generally divided into preformed and induced defense responses. Preformed defense responses include both physical barriers and phytochemicals, which are the first line of protection. Induced defense responses, which include innate immunity (pattern-triggered immunity and effector-triggered immunity), local defense responses, and systemic defense signaling, are triggered to counterstrike fungal pathogens. Therefore, to develop regulatory strategies for horticultural plant resistance, a comprehensive understanding of defense responses and their underlying mechanisms is critical. Recently, integrated multi-omics analyses, CRISPR-Cas9-based gene editing, high-throughput sequencing, and data mining have greatly contributed to identification and functional determination of novel phytochemicals, regulatory factors, and signaling molecules and their signaling pathways in plant resistance. In this review, research progress on defense responses of horticultural crops to fungal pathogens and novel regulatory strategies to regulate induction of plant resistance are summarized, and then the problems, challenges, and future research directions are examined.
Collapse
Affiliation(s)
- Xiaodi Xu
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Ma Y, Chhapekar SS, Lu L, Yu X, Kim S, Lee SM, Gan TH, Choi GJ, Lim YP, Choi SR. QTL mapping for Fusarium wilt resistance based on the whole-genome resequencing and their association with functional genes in Raphanus sativus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3925-3940. [PMID: 34387712 DOI: 10.1007/s00122-021-03937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Two major QTL associated with resistance to Fusarium wilt (FW) were identified using whole-genome resequencing. Sequence variations and gene expression level differences suggest that TIR-NBS and LRR-RLK are candidate genes associated with FW-resistance. Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. raphani is an important disease in radish, leading to severe decrease in yield and quality. YR4 as a novel genetic source to resistant to FW was confirmed through screening with five pathogen isolates. We have generated F2 and F2:3 populations segregated with FW resistance using YR4 and YR18 inbred lines. The disease symptom was evaluated in F2:3 population (n = 180) in three independent studies over two years. We identified 4 QTL including the two major QTL (FoRsR7.159A and FoRsR9.359A). FoRsR7.159A and FoRsR9.359A were detected in three replicated experiments. FoRsR7.159A was delimited to the 2.18-Mb physical interval on chromosome R07, with a high LOD value (5.17-12.84) and explained phenotypic variation (9.34%-27.97%). The FoRsR9.359A represented relatively low LOD value (3.38-4.52) and explained phenotypic variation (6.24%-8.82%). On the basis of the re-sequencing data for the parental lines, we identified five putative resistance-related genes and 13 unknown genes with sequence variations at the gene and protein levels. A semi-quantitative RT-PCR analysis revealed that Rs382940 (TIR-NBS) and Rs382200 (RLK) were expressed only in 'YR4' from 0 to 6 days after the inoculation. Moreover, Rs382950 (TIR-NBS-LRR) was more highly expressed in 'YR4' from 3 to 6 days after the inoculation. These three genes might be important for FW-resistance in radish. We identified several markers based on these potential candidate genes. The marker set should be useful for breeding system to introduce the FW resistance loci from 'YR4' to improve tolerance to FW.
Collapse
Affiliation(s)
- Yinbo Ma
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sushil Satish Chhapekar
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Xiaona Yu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Shandong Peanut Industry Collaborative Innovation Center, College of Agronomy, Qingdao Agricultural University, Qingdao, 266000, China
| | - Seungho Kim
- Neo Seed Co., 256-45 Jingeonjung-gil, Gongdo-eup, Anseong, Gyeonggi Province, 17565, Republic of Korea
| | - Soo Min Lee
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Tae Hyoung Gan
- JIREH Seed Co., 104 Dongtansunhwan-daero 20-gil, Hwaseong, Gyeonggi Province, 18484, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Su Ryun Choi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
13
|
Yu X, Zhong S, Yang H, Chen C, Chen W, Yang H, Guan J, Fu P, Tan F, Ren T, Shen J, Zhang M, Luo P. Identification and Characterization of NBS Resistance Genes in Akebia trifoliata. FRONTIERS IN PLANT SCIENCE 2021; 12:758559. [PMID: 34777439 PMCID: PMC8585750 DOI: 10.3389/fpls.2021.758559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/08/2021] [Indexed: 05/26/2023]
Abstract
Akebia trifoliata is an important multiuse perennial plant that often suffers attacks from various pathogens due to its long growth cycle, seriously affecting its commercial value. The absence of research on the resistance (R) genes of A. trifoliata has greatly limited progress in the breeding of resistant varieties. Genes encoding proteins containing nucleotide binding sites (NBSs) and C-terminal leucine-rich repeats (LRRs), the largest family of plant resistance (R) genes, are vital for plant disease resistance. A comprehensive genome-wide analysis showed that there were only 73 NBS genes in the A. trifoliata genome, including three main subfamilies (50 coiled coil (CC)-NBS-LRR (CNL), 19 Toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) and four resistance to powdery mildew8 (RPW8)-NBS-LRR (RNL) genes). Additionally, 64 mapped NBS candidates were unevenly distributed on 14 chromosomes, most of which were assigned to the chromosome ends; 41 of these genes were located in clusters, and the remaining 23 genes were singletons. Both the CNLs and TNLs were further divided into four subgroups, and the CNLs had fewer exons than the TNLs. Structurally, all eight previously reported conserved motifs were identified in the NBS domains, and both their order and their amino acid sequences exhibited high conservation. Evolutionarily, tandem and dispersed duplications were shown to be the two main forces responsible for NBS expansion, producing 33 and 29 genes, respectively. A transcriptome analysis of three fruit tissues at four developmental stages showed that NBS genes were generally expressed at low levels, while a few of these genes showed relatively high expression during later development in rind tissues. Overall, this research is the first to identify and characterize A. trifoliata NBS genes and is valuable for both the development of new resistant cultivars and the study of molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Xiaojiao Yu
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Shengfu Zhong
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Huai Yang
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chen Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Wei Chen
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Akebia trifoliata Biotechnology Co., Ltd., Chengdu, China
| | - Hao Yang
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Akebia trifoliata Biotechnology Co., Ltd., Chengdu, China
| | - Ju Guan
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Peng Fu
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Feiquan Tan
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
| | - Tianheng Ren
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jinliang Shen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Min Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Peigao Luo
- Provincial Key Laboratory for Plant Genetics and Breeding, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Shi JL, Zai WS, Xiong ZL, Wan HJ, Wu WR. NB-LRR genes: characteristics in three Solanum species and transcriptional response to Ralstonia solanacearum in tomato. PLANTA 2021; 254:96. [PMID: 34655339 DOI: 10.1007/s00425-021-03745-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
NB-LRR genes in the three Solanum species showed specific constitution characteristics and evolved multiple clusters and duplicates. Some genes could respond to biotic stresses such as tomato bacterial wilt. Nucleotide-binding and leucine-rich repeat (NB-LRR, NLR) is a largest resistance gene family in plants, which plays a key role in response to biotic stresses. In this study, NB-LRR genes in cultivated tomato Solanum lycopersicum (Sl) and its wild relatives S. pennellii (Spe) and S. pimpinellifolium (Spi) were analyzed using bioinformatics approaches. In total, 238, 202 and 217 NB-LRR genes of 8 different types were found in Sl, Spe and Spi, respectively. The three species showed similar genomic characteristics. The NB-LRR genes were mainly distributed on chromosomes 4, 5 and 11 and located at the distal zones, forming multiple clusters and tandem duplicates. A large number of homologs appeared through gene expansion, with most Ka/Ks values being less than 1, indicating that purifying selection had occurred in evolution. These genes were mainly expressed in root and could respond to different biotic stresses. RT-qPCR analysis revealed that SlNLR genes could respond to tomato bacterial wilt, with SlNLR1 probably involved in the resistance response, whereas others being the opposite. The transcription factors (TFs) and interaction proteins that regulate target genes were mainly Dof, NAC and MYB families and kinases. The results provide a basis for the isolation and application of related genes in plant disease resistance breeding.
Collapse
Affiliation(s)
- Jian Lei Shi
- Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Wen Shan Zai
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Zhi Li Xiong
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Hong Jian Wan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Ren Wu
- Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
15
|
Ma Y, Chhapekar SS, Lu L, Oh S, Singh S, Kim CS, Kim S, Choi GJ, Lim YP, Choi SR. Genome-wide identification and characterization of NBS-encoding genes in Raphanus sativus L. and their roles related to Fusarium oxysporum resistance. BMC PLANT BIOLOGY 2021; 21:47. [PMID: 33461498 PMCID: PMC7814608 DOI: 10.1186/s12870-020-02803-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/16/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND The nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes are important for plant development and disease resistance. Although genome-wide studies of NBS-encoding genes have been performed in several species, the evolution, structure, expression, and function of these genes remain unknown in radish (Raphanus sativus L.). A recently released draft R. sativus L. reference genome has facilitated the genome-wide identification and characterization of NBS-encoding genes in radish. RESULTS A total of 225 NBS-encoding genes were identified in the radish genome based on the essential NB-ARC domain through HMM search and Pfam database, with 202 mapped onto nine chromosomes and the remaining 23 localized on different scaffolds. According to a gene structure analysis, we identified 99 NBS-LRR-type genes and 126 partial NBS-encoding genes. Additionally, 80 and 19 genes respectively encoded an N-terminal Toll/interleukin-like domain and a coiled-coil domain. Furthermore, 72% of the 202 NBS-encoding genes were grouped in 48 clusters distributed in 24 crucifer blocks on chromosomes. The U block on chromosomes R02, R04, and R08 had the most NBS-encoding genes (48), followed by the R (24), D (23), E (23), and F (17) blocks. These clusters were mostly homogeneous, containing NBS-encoding genes derived from a recent common ancestor. Tandem (15 events) and segmental (20 events) duplications were revealed in the NBS family. Comparative evolutionary analyses of orthologous genes among Arabidopsis thaliana, Brassica rapa, and Brassica oleracea reflected the importance of the NBS-LRR gene family during evolution. Moreover, examinations of cis-elements identified 70 major elements involved in responses to methyl jasmonate, abscisic acid, auxin, and salicylic acid. According to RNA-seq expression analyses, 75 NBS-encoding genes contributed to the resistance of radish to Fusarium wilt. A quantitative real-time PCR analysis revealed that RsTNL03 (Rs093020) and RsTNL09 (Rs042580) expression positively regulates radish resistance to Fusarium oxysporum, in contrast to the negative regulatory role for RsTNL06 (Rs053740). CONCLUSIONS The NBS-encoding gene structures, tandem and segmental duplications, synteny, and expression profiles in radish were elucidated for the first time and compared with those of other Brassicaceae family members (A. thaliana, B. oleracea, and B. rapa) to clarify the evolution of the NBS gene family. These results may be useful for functionally characterizing NBS-encoding genes in radish.
Collapse
Affiliation(s)
- Yinbo Ma
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Sushil Satish Chhapekar
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Sangheon Oh
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Sonam Singh
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Chang Soo Kim
- Department of Crop Science, College of Agricultural and Life Sciences, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Seungho Kim
- Neo Seed Co., 256-45 Jingeonjung-gil, Gongdo-eup, Anseong, Gyeonggi Province 17565 Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114 Republic of Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Su Ryun Choi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134 Republic of Korea
| |
Collapse
|
16
|
Cantila AY, Saad NSM, Amas JC, Edwards D, Batley J. Recent Findings Unravel Genes and Genetic Factors Underlying Leptosphaeria maculans Resistance in Brassica napus and Its Relatives. Int J Mol Sci 2020; 22:E313. [PMID: 33396785 PMCID: PMC7795555 DOI: 10.3390/ijms22010313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/20/2022] Open
Abstract
Among the Brassica oilseeds, canola (Brassica napus) is the most economically significant globally. However, its production can be limited by blackleg disease, caused by the fungal pathogen Lepstosphaeria maculans. The deployment of resistance genes has been implemented as one of the key strategies to manage the disease. Genetic resistance against blackleg comes in two forms: qualitative resistance, controlled by a single, major resistance gene (R gene), and quantitative resistance (QR), controlled by numerous, small effect loci. R-gene-mediated blackleg resistance has been extensively studied, wherein several genomic regions harbouring R genes against L. maculans have been identified and three of these genes were cloned. These studies advance our understanding of the mechanism of R gene and pathogen avirulence (Avr) gene interaction. Notably, these studies revealed a more complex interaction than originally thought. Advances in genomics help unravel these complexities, providing insights into the genes and genetic factors towards improving blackleg resistance. Here, we aim to discuss the existing R-gene-mediated resistance, make a summary of candidate R genes against the disease, and emphasise the role of players involved in the pathogenicity and resistance. The comprehensive result will allow breeders to improve resistance to L. maculans, thereby increasing yield.
Collapse
Affiliation(s)
| | | | | | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia; (A.Y.C.); (N.S.M.S.); (J.C.A.); (D.E.)
| |
Collapse
|
17
|
Frontiers in Dissecting and Managing Brassica Diseases: From Reference-Based RGA Candidate Identification to Building Pan-RGAomes. Int J Mol Sci 2020; 21:ijms21238964. [PMID: 33255840 PMCID: PMC7728316 DOI: 10.3390/ijms21238964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
The Brassica genus contains abundant economically important vegetable and oilseed crops, which are under threat of diseases caused by fungal, bacterial and viral pathogens. Resistance gene analogues (RGAs) are associated with quantitative and qualitative disease resistance and the identification of candidate RGAs associated with disease resistance is crucial for understanding the mechanism and management of diseases through breeding. The availability of Brassica genome assemblies has greatly facilitated reference-based quantitative trait loci (QTL) mapping for disease resistance. In addition, pangenomes, which characterise both core and variable genes, have been constructed for B. rapa, B. oleracea and B. napus. Genome-wide characterisation of RGAs using conserved domains and motifs in reference genomes and pangenomes reveals their clustered arrangements and presence of structural variations. Here, we comprehensively review RGA identification in important Brassica genome and pangenome assemblies. Comparison of the RGAs in QTL between resistant and susceptible individuals allows for efficient identification of candidate disease resistance genes. However, the reference-based QTL mapping and RGA candidate identification approach is restricted by the under-represented RGA diversity characterised in the limited number of Brassica assemblies. The species-wide repertoire of RGAs make up the pan-resistance gene analogue genome (pan-RGAome). Building a pan-RGAome, through either whole genome resequencing or resistance gene enrichment sequencing, would effectively capture RGA diversity, greatly expanding breeding resources that can be utilised for crop improvement.
Collapse
|