1
|
Population Dynamics of Wide Compatibility System and Evaluation of Intersubspecific Hybrids by indica-japonica Hybridization in Rice. PLANTS 2022; 11:plants11151930. [PMID: 35893634 PMCID: PMC9332614 DOI: 10.3390/plants11151930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/17/2022]
Abstract
The exploitation of heterosis through intersubspecific hybridisation between indica and japonica has been a major breeding target in rice, but is marred by the cross incompatibility between the genomes. Wide compatibility (WC) is a triallelic system at the S5 locus on chromosome 6 that ensures the specificity of hybridisation within and between indica and japonica. The S5n allele that favours intercrossing is sparsely distributed in the rice gene pool and therefore warrants identification of diverse WC sources to develop superior intersubspecific hybrids. In this study, we have identified several novel WC sources through the marker-assisted screening of a large set of 950 rice genotypes. Seventeen percent of the genotypes carried S5n, which fell into two subpopulations. The WC genotypes showed wide phenotypic and genotypic variability, including both indica and japonica lines. Based on phenotypic performance, the WC varieties were grouped into three clusters. A subset of 41 WC varieties was used to develop 164 hybrids, of which WC/japonica hybrids showed relative superiority over WC/indica hybrids. The multilocation evaluation of hybrids indicated that hybrids derived from WC varieties, such as IRG137, IRG143, OYR128, and IRGC10658, were higher yielding across all the three different locations. Most of the hybrids showed the stability of performance across locations. The identified diverse set of wide compatible varieties (WCVs) can be used in the development of intersubspecific hybrids and also for parental line development in hybrid rice breeding.
Collapse
|
2
|
Population Structure of a Worldwide Collection of Tropical Japonica Rice Indicates Limited Geographic Differentiation and Shows Promising Genetic Variability Associated with New Plant Type. Genes (Basel) 2022; 13:genes13030484. [PMID: 35328038 PMCID: PMC8956019 DOI: 10.3390/genes13030484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022] Open
Abstract
Abating the approaching yield plateau in rice requires taking advantage of potential technologies that requires knowledge on genetic diversity. Hybrid breeding, particularly in indica rice, requires the recruitment of large genetic variability from outside because the available genetic diversity of the cultivated pool has already been utilized to a great extent. In this study, we examined an assembly of 200 tropical japonica lines collected worldwide for population genetic structure and variability in yield-associated traits. Tested along with 30 indica and six wild rice lines belonging to India, the tropical japonica lines indicated great phenotypic variability, particularly related to new plant type (NPT) phenology, and formed six clusters. Furthermore, a marker-based characterization using a universal diversity marker panel classified the genotype assembly into four clusters, of which three encompassed tropical japonica lines, while the last cluster included mostly indica lines. The population structure of the panel also revealed a similar pattern, with tropical japonica lines forming three subpopulations. Remarkable variation in the allelic distribution was observed between the subpopulations. Superimposing the geographical sources of the genotypes over the population structure did not reveal any pattern. The genotypes sourced closer to the center of origin of rice showed relatively little diversity compared with the ones obtained from other parts of the world, suggesting migration from a common region of origin. The tropical japonica lines can be a great source of parental diversification for hybrid development after confirming the presence of widely compatible genes.
Collapse
|
3
|
Kulkarni SR, Balachandran SM, Ulaganathan K, Balakrishnan D, Prasad ASH, Rekha G, Kousik MBVN, Hajira SK, Kale RR, Aleena D, Anila M, Punniakoti E, Dilip T, Pranathi K, Das MA, Shaik M, Chaitra K, Sinha P, Sundaram RM. Mapping novel QTLs for yield related traits from a popular rice hybrid KRH-2 derived doubled haploid (DH) population. 3 Biotech 2021; 11:513. [PMID: 34926111 DOI: 10.1007/s13205-021-03045-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022] Open
Abstract
A doubled haploid (DH) population consisting of 125 DHLs derived from the popular rice hybrid, KRH-2 (IR58025A/KMR3R) was utilized for Quantitative Trait Loci (QTL) mapping to identify novel genomic regions associated with yield related traits. A genetic map was constructed with 126 polymorphic SSR and EST derived markers, which were distributed across rice genome. QTL analysis using inclusive composite interval mapping (ICIM) method identified a total of 24 major and minor effect QTLs. Among them, twelve major effect QTLs were identified for days to fifty percent flowering (qDFF12-1), total grain yield/plant (qYLD3-1 and qYLD6-1), test (1,000) grain weight (qTGW6-1 and qTGW7-1), panicle weight (qPW9-1), plant height (qPH12-1), flag leaf length (qFLL6-1), flag leaf width (qFLW4-1), panicle length (qPL3-1 and qPL6-1) and biomass (qBM4-1), explaining 29.95-56.75% of the phenotypic variability with LOD scores range of 2.72-16.51. Chromosomal regions with gene clusters were identified on chromosome 3 for total grain yield/plant (qYLD3-1) and panicle length (qPL3-1) and on chromosome 6 for total grain yield/plant (qYLD6-1), flag leaf length (qFLL6-1) and panicle length (qPL6-1). Majority of the QTLs identified were observed to be co-localized with the previously reported QTL regions. Five novel, major effect QTLs associated with panicle weight (qPW9-1), plant height (qPH12-1), flag leaf width (qFLW4-1), panicle length (qPL3-1) and biomass (qBM4-1) and three novel minor effect QTLs for panicle weight (qPW3-1 and qPW8-1) and fertile grains per panicle (qFGP5-1) were identified. These QTLs can be used in breeding programs aimed to yield improvement after their validation in alternative populations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03045-7.
Collapse
Affiliation(s)
- Swapnil Ravindra Kulkarni
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - S M Balachandran
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - K Ulaganathan
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, 500007 India
| | - Divya Balakrishnan
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - A S Hari Prasad
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - G Rekha
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - M B V N Kousik
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - S K Hajira
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - Ravindra Ramarao Kale
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - D Aleena
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - M Anila
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - E Punniakoti
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - T Dilip
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - K Pranathi
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - M Ayyappa Das
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - Mastanbee Shaik
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - K Chaitra
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - Pragya Sinha
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| | - R M Sundaram
- Biotechnology Department, ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana State (TS) 500030 India
| |
Collapse
|