1
|
Kausar MA, Narayan J, Mishra N, Akhter Y, Singh R, Khalifa AM, El-Hag ABM, Ahmed RME, Tyagi N, Mahfooz S. Studying Human Pathogenic Cryptococcus Gattii Lineages by Utilizing Simple Sequence Repeats to Create Diagnostic Markers and Analyzing Diversity. Biochem Genet 2024:10.1007/s10528-024-10812-7. [PMID: 38773043 DOI: 10.1007/s10528-024-10812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/11/2024] [Indexed: 05/23/2024]
Abstract
In this study, we compared the occurrence, relative abundance (RA), and density (RD) of simple sequence repeats (SSRs) among the lineages of human pathogenic Cryptococcus gattii using an in-silico approach to gain a deeper understanding of the structure and evolution of their genomes. C. gattii isolate MF34 showed the highest RA and RD of SSRs in both the genomic and transcriptomic sequences, followed by isolate WM276. In both the genomic (50%) and transcriptomic (65%) sequences, trinucleotide SSRs were the most common SSR class. A motif conservation study found that the isolates had stronger conservation (56.1%) of motifs, with isolate IND107 having the most (5.7%) unique motifs. We discovered the presence of SSRs in genes that are directly or indirectly associated with disease using gene enrichment analysis. Isolate-specific unique motifs identified in this study could be utilized as molecular probes for isolate identification. To improve genetic resources among C. gattii isolates, 6499 primers were developed. These genomic resources developed in this study could help with diversity analysis and the development of isolate-specific markers.
Collapse
Affiliation(s)
- Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha'il, Hail, 2440, Saudi Arabia.
| | - Jitendra Narayan
- CSIR- Institute of Genomics and Integrative Biology, Mall Road, New Delhi, 110007, India
| | - Nishtha Mishra
- Department of Chemistry, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia Central University, New Delhi, 110025, India
| | - Amany Mohammed Khalifa
- Department of Pathology, College of Medicine, University of Ha'il, Hail, 2440, Saudi Arabia
| | | | | | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, University of Louisville, Louisville, USA
| | - Sahil Mahfooz
- Department of Industrial Microbiology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, India.
| |
Collapse
|
2
|
Agarwal P, Shukla N, Bhatia A, Mahfooz S, Narayan J. Comparative genome analysis reveals driving forces behind Monkeypox virus evolution and sheds light on the role of ATC trinucleotide motif. Virus Evol 2024; 10:veae043. [PMID: 38827420 PMCID: PMC11141602 DOI: 10.1093/ve/veae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Monkeypox (MPOX), a zoonotic disease originating in Western and Central Africa in 1970, has seen a recent surge in outbreaks across 100+ countries. A comparative analysis of 404 Monkeypox virus (MPXV) genomes revealed notable changes in microsatellite abundance and density, especially within Clades I, IIa, and IIb. Each clade exhibited unique microsatellite motifs, with twenty-six conserved loci specific to MPXV, suggesting their potential as molecular markers in diagnostics. Additionally, nine genes in the MPXV genome featured ten variable hotspot microsatellite regions associated with surface protein synthesis and host control. Notably, gene OPG153, especially at the SSR locus '(ATC)n', exhibited the most pronounced variations among lineages over time and plays a role in virus pathogenesis within the host cell. These findings not only enhance our understanding of MPXV unique molecular profile but also offer valuable insights into potential pathogenic and evolutionary implications.
Collapse
Affiliation(s)
- Preeti Agarwal
- Bioinformatics and Big Data, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Nityendra Shukla
- Bioinformatics and Big Data, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Ajay Bhatia
- Bioinformatics and Big Data, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sahil Mahfooz
- Department of Industrial Microbiology, Deen Dayal Upadhyaya Gorakhpur University, Civil Lines, Gorakhpur 273009, India
| | - Jitendra Narayan
- Bioinformatics and Big Data, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
3
|
Kausar MA, Narayan J, Agarwal P, Singh P, Ahmed RME, El-Hag ABM, Khalifa AM, Mohammed NARK, Singh R, Mahfooz S. Distribution and conservation of simple sequence repeats in plant pathogenic species of Zymoseptoria and development of genomic resources for its orphaned species. Antonie Van Leeuwenhoek 2024; 117:11. [PMID: 38170404 DOI: 10.1007/s10482-023-01915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
To better understand the structure and evolution of the genomes of four plant pathogenic species of Zymoseptoria, we analyzed the occurrence, relative abundance (RA), and density (RD) of simple sequence repeats (SSRs) in their whole genome and transcriptome sequences. In this study, SSRs are defined as repeats of more than 12 bases in length. The genome and transcriptome sequences of Zymoseptoria ardabiliae show the highest RA (201.1 and 129.9) and RD (3229.4 and 1928.2) of SSRs, while those of Zymoseptoria pseudotritici show the lowest RA (167.2 and 118.5) and RD (2482.2 and 1687.0). The majority of SSRs in the genomic and transcriptome sequences of species were trinucleotide SSRs, while dinucleotide SSRs were the least common. The most common trinucleotide motifs in the transcriptomic sequences across all species were those that encoded the amino acid arginine. As per our motif conservation study, Zymoseptoria tritici (12.4%) possessed the most unique motifs, while Z. pseudotritici (3.9%) had the fewest. Overall, only 38.1% of the motifs were found to be conserved among the species. Gene enrichment studies reveal that three of the species, Z. ardabiliae, Zymoseptoria brevis, and Z. pseudotritici, have SSRs in their genes related to cellular metabolism, while the remaining Z. tritici harbors SSRs in genes related to DNA synthesis and gene expression. In an effort to improve the genetic resources for the orphan species of pathogenic Zymoseptoria, a total of 73,134 primers were created. The genomic resources developed in this study could help with analyses of genetic relatedness within the population and the development of species-specific markers.
Collapse
Affiliation(s)
- Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, 2440, Hail, Saudi Arabia.
| | - Jitendra Narayan
- CSIR- Institute of Genomics and Integrative Biology, Mall Road, New Delhi, 110007, India
| | - Preeti Agarwal
- CSIR- Institute of Genomics and Integrative Biology, Mall Road, New Delhi, 110007, India
| | - Pallavi Singh
- Department of Biotechnology, Dr APJ Abdul Kalam Technical University, Lucknow, 226031, India
| | | | | | - Amany Mohammed Khalifa
- Department of Pathology, College of Medicine, University of Hail, 2440, Hail, Saudi Arabia
| | | | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia Central University, 110025, New Delhi, India
| | - Sahil Mahfooz
- The Academic Editors, Saryu Enclave, Awadh Vikas Yojna, Lucknow, 226002, India.
- Department of Industrial Microbiology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, India.
| |
Collapse
|
4
|
Verbiest M, Maksimov M, Jin Y, Anisimova M, Gymrek M, Bilgin Sonay T. Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species. J Evol Biol 2023; 36:321-336. [PMID: 36289560 PMCID: PMC9990875 DOI: 10.1111/jeb.14106] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 02/03/2023]
Abstract
Short tandem repeats (STRs) are units of 1-6 bp that repeat in a tandem fashion in DNA. Along with single nucleotide polymorphisms and large structural variations, they are among the major genomic variants underlying genetic, and likely phenotypic, divergence. STRs experience mutation rates that are orders of magnitude higher than other well-studied genotypic variants. Frequent copy number changes result in a wide range of alleles, and provide unique opportunities for modulating complex phenotypes through variation in repeat length. While classical studies have identified key roles of individual STR loci, the advent of improved sequencing technology, high-quality genome assemblies for diverse species, and bioinformatics methods for genome-wide STR analysis now enable more systematic study of STR variation across wide evolutionary ranges. In this review, we explore mutation and selection processes that affect STR copy number evolution, and how these processes give rise to varying STR patterns both within and across species. Finally, we review recent examples of functional and adaptive changes linked to STRs.
Collapse
Affiliation(s)
- Max Verbiest
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Mikhail Maksimov
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ye Jin
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Maria Anisimova
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Melissa Gymrek
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Tugce Bilgin Sonay
- Institute of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
5
|
Genetic Diversity and Streptomycin Sensitivity in Xanthomonas axonopodis pv. punicae Causing Oily Spot Disease in Pomegranates. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Xanthomonas axonopodis pv. punicae (Xap) causes bacterial blight disease in pomegranates, often leading to 60–80% economic loss. In absence of a suitable Xap-resistant variety, the near-monoculture of the susceptible variety, Bhagwa, has aggravated the problem further. In recent times, Xap has spread to different geographical regions, indicating the wide adaptability of the pathogen. Moreover, lower sensitivity of Xap towards streptocycline containing streptomycin sulphate and tetracycline sulphate (9:1) under field conditions is frequently reported. Therefore, the current study was undertaken to assess the genetic variability of Xap isolates using SSR markers, their in vitro sensitivity towards streptomycin was evaluated, and the probable molecular basis of acquired resistance was studied. Two highly diverse isolates showed extreme differences in their pathogenicity, indicating the highly evolving nature of the pathogen. Moreover, all the isolates showed less than 50% growth inhibition on media containing 1500 µg/mL streptomycin, indicating a lower level of antibiotic sensitivity. On the molecular level, 90% of the isolates showed the presence of strA-strB genes involved in streptomycin metabolism. Additionally, G to A transitions were observed in the rpsL gene in some of the isolates. The molecular data suggest that horizontal gene transfer (strAB) and/or spontaneous gene mutation (in rpsL) could be responsible for the observed lower sensitivity of Xap towards streptomycin.
Collapse
|
6
|
Mahfooz S, Shankar G, Narayan J, Singh P, Akhter Y. Simple sequence repeat insertion induced stability and potential 'gain of function' in the proteins of extremophilic bacteria. Extremophiles 2022; 26:17. [PMID: 35511349 DOI: 10.1007/s00792-022-01265-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/11/2022] [Indexed: 11/26/2022]
Abstract
Here, we analysed the genomic evolution in extremophilic bacteria using long simple sequence repeats (SSRs). Frequencies of occurrence, relative abundance (RA) and relative density (RD) of long SSRs were analysed in the genomes of extremophilic bacteria. Thermus aquaticus had the most RA and RD of long SSRs in its coding sequences (110.6 and 1408.3), followed by Rhodoferax antarcticus (77.0 and 1187.4). A positive correlation was observed between G + C content and the RA-RD of long SSRs. Geobacillus kaustophilus, Geobacillus thermoleovorans, Halothermothrix orenii, R. antarcticus, and T. aquaticus preferred trinucleotide repeats within their genomes, whereas others preferred a higher number of tetranucleotide repeats. Gene enrichment showed the presence of these long SSRs in metabolic enzyme encoding genes related to stress tolerance. To analyse the functional implications of SSR insertions, three-dimensional protein structure modelling of SSR containing diguanylate cyclase (DGC) gene encoding protein was carried out. Removal of SSR sequence led to an inappropriate folding and instability of the modelled protein structure.
Collapse
Affiliation(s)
- Sahil Mahfooz
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Jitendra Narayan
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi, 110025, India
| | - Pallavi Singh
- Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, 226031, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
7
|
Singh P, Nath R, Venkatesh V. Comparative Genome-Wide Characterization of Microsatellites in Candida albicans and Candida dubliniensis Leading to the Development of Species-Specific Marker. Public Health Genomics 2021; 24:1-13. [PMID: 33401274 DOI: 10.1159/000512087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/30/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Microsatellites or simple sequence repeats (SSR) are related to genomic structure, function, and certain diseases of taxonomically different organisms. OBJECTIVE To characterize microsatellites in two closely related Candida species by searching and comparing 1-6 bp nucleotide motifs and utilizing them to develop species-specific markers. METHODS Whole-genome sequence was downloaded from the public domain, microsatellites were mined and analyzed, and primers were synthesized. RESULTS A total of 15,821 and 7,868 microsatellites, with mono-nucleotides (8,679) and trinucleotides (3,156) as most frequent microsatellites, were mined in Candida dubliniensis and Candida albicans, respectively. Chromosome size was found positively correlated with microsatellite number in both the species, whereas it was negatively correlated with the relative abundance and density of microsatellites. A number of unique motifs were also found in both the species. Overall, microsatellite frequencies of each chromosome in C. dubliniensis were higher than in C. albicans. CONCLUSION The features of microsatellite distribution in the two species' genomes revealed that it is probably not conserved in the genus Candida. Data generated in this article could be used for comparative genome mapping and understanding the distribution of microsatellites and genome structure between these closely related and phenotypically misidentified species and may provide a foundation for the development of a new set of species-specific microsatellite markers. Here, we also report a novel microsatellite-based marker for C. dubliniensis-specific identification.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India, .,Department of Computer Science & Engineering, UIET, CSJM University, Kanpur, India,
| | - Ravindra Nath
- Department of Computer Science & Engineering, UIET, CSJM University, Kanpur, India
| | - Vimala Venkatesh
- Department of Microbiology, King George's Medical University, Lucknow, India
| |
Collapse
|