1
|
Xue M, Zhao S, Gu G, Xu D, Zhang X, Hou X, Miao J, Dong H, Hu D, Lai D, Zhou L. A Genome-Wide Comparison of Rice False Smut Fungus Villosiclava virens Albino Strain LN02 Reveals the Genetic Diversity of Secondary Metabolites and the Cause of Albinism. Int J Mol Sci 2023; 24:15196. [PMID: 37894876 PMCID: PMC10607355 DOI: 10.3390/ijms242015196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Rice false smut (RFS) caused by Villosiclava virens (anamorph: Ustilaginoidea virens) has become one of the most destructive fungal diseases to decrease the yield and quality of rice grains. An albino strain LN02 was isolated from the white RFS balls collected in the Liaoning Province of China in 2019. The strain LN02 was considered as a natural albino mutant of V. virens by analyzing its phenotypes, internal transcribed spacer (ITS) conserved sequence, and biosynthesis gene clusters (BGCs) for secondary metabolites. The total assembled genome of strain LN02 was 38.81 Mb, which was comprised of seven nuclear chromosomes and one mitochondrial genome with an N50 value of 6,326,845 bp and 9339 protein-encoding genes. In addition, the genome of strain LN02 encoded 19 gene clusters for biosynthesis of secondary metabolites mainly including polyketides, terpenoids and non-ribosomal peptides (NRPs). Four sorbicillinoid metabolites were isolated from the cultures of strain LN02. It was found that the polyketide synthase (PKS)-encoding gene uspks1 for ustilaginoidin biosynthesis in strain LN02 was inactivated due to the deletion of four bases in the promoter sequence of uvpks1. The normal uvpks1 complementary mutant of strain LN02 could restore the ability to synthesize ustilaginoidins. It demonstrated that deficiency of ustilaginoidin biosynthesis is the cause of albinism for RFS albino strain LN02, and V. virens should be a non-melanin-producing fungus. This study further confirmed strain LN02 as a white phenotype mutant of V. virens. The albino strain LN02 will have a great potential in the development and application of secondary metabolites. The physiological and ecological functions of ustilaginoidins in RFS fungus are needed for further investigation.
Collapse
Affiliation(s)
- Mengyao Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Siji Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Gan Gu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Dan Xu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Xuping Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Xuwen Hou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Jiankun Miao
- Institute of Plant Protection, Liaoning Academy of Agricultural Science, Shenyang 110161, China; (J.M.); (H.D.)
| | - Hai Dong
- Institute of Plant Protection, Liaoning Academy of Agricultural Science, Shenyang 110161, China; (J.M.); (H.D.)
| | - Dongwei Hu
- Biotechnology Institute, Zhejiang University, Hangzhou 310058, China;
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (S.Z.); (G.G.); (D.X.); (X.Z.); (X.H.); (D.L.)
| |
Collapse
|
2
|
Bashyal BM, Yadav GK, Parmar P, Sunani SK, Aggarwal S, Gopala Krishnan S, Kumar A, Zaidi NW, Aggarwal R. High-Quality Genome Resource of Ustilaginoidea virens (UV2_4G), Causal Agent of an Emerging False Smut Disease in Rice. PLANT DISEASE 2023; 107:896-898. [PMID: 36265154 DOI: 10.1094/pdis-05-22-1193-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ustilaginoidea virens is the fungal pathogen causing an emerging false smut disease that affects crop yield as well as deteriorates quality of the grains by producing mycotoxins. A high quality genome of U. virens isolate UV2_4G was sequenced using Nanopore and Illumina HiSeq 2,000 sequencing platforms. The total assembled genome of Indian isolate UV2_4G was 35.9 Mb, which comprised 89 scaffolds with N50 of 700,296 bp. A total of 358,697 variants were identified in the genome, out of which 355,173 were SNPs and 3,524 were INDELS. Further, 7,390 SSRs belonging to different repeat types were also identified in the genome. Out of 7,444 proteins predicted, 7,206 were functionally annotated. A total of 1,307 CAZymes, 501 signal peptides, 1,876 effectors, and 2,709 genes involved in host-pathogen interactions were identified. Comparative analysis revealed isolate UV2_4G is distinct with 31 unique clusters and placed distantly in phylogenetic analysis. Taken together, this high-quality genome assembly and sequence annotation resource can give an improved insight for characterizing the biological and pathogenic mechanisms of U. virens.
Collapse
Affiliation(s)
- Bishnu Maya Bashyal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Gaurav Kumar Yadav
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pooja Parmar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sunil Kumar Sunani
- ICAR-Indian Institute of Pulse Research, Regional station, Khordha, Bhubaneswar, Odisha 752055, India
| | - Shweta Aggarwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - S Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi 110012, India
| | | | - Rashmi Aggarwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
3
|
Wang Y, Yang L, Yang Q, Dong J, Wang Y, Duan Y, Yin W, Zheng L, Sun W, Fan J, Luo CX, Li G. Gap-Free Nuclear and Mitochondrial Genomes of Ustilaginoidea virens JS60-2, a Fungal Pathogen Causing Rice False Smut. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1120-1123. [PMID: 36510363 DOI: 10.1094/mpmi-07-22-0158-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rice false smut (RFS), caused by Ustilaginoidea virens, has become a major disease in recent years, and mycotoxins produced by U. virens often threaten food safety. To study fungal pathogenesis and identify potential targets for developing new fungicides, gap-free nuclear and complete mitochondrial genomes of U. virens JS60-2 were sequenced and assembled. Using the second and third generation sequencing data, we assembled a 38.02-Mb genome that consists of seven contigs with the contig N50 being 6.32-Mb. In total, 8,486 protein-coding genes were annotated in the genome, including 21 secondary metabolism gene clusters. We also assembled the complete mitochondrial genome, which is 102,498 bp, with 28% GC content. The JS60-2 genomes assembled in this study will facilitate research on U. virens and contribute to RFS control. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yin Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qun Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Dong
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufu Wang
- Key Lab of Horticultural Plant Biology, Ministry of Education, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhang Duan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weixiao Yin
- Key Lab of Horticultural Plant Biology, Ministry of Education, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenxian Sun
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chao-Xi Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Usha T, Middha SK, Babu D, Goyal AK, Das AJ, Saini D, Sarangi A, Krishnamurthy V, Prasannakumar MK, Saini DK, Sidhalinghamurthy KR. Hybrid Assembly and Annotation of the Genome of the Indian Punica granatum, a Superfood. Front Genet 2022; 13:786825. [PMID: 35646087 PMCID: PMC9130716 DOI: 10.3389/fgene.2022.786825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
The wonder fruit pomegranate (Punica granatum, family Lythraceae) is one of India’s economically important fruit crops that can grow in different agro-climatic conditions ranging from tropical to temperate regions. This study reports high-quality de novo draft hybrid genome assembly of diploid Punica cultivar “Bhagwa” and identifies its genomic features. This cultivar is most common among the farmers due to its high sustainability, glossy red color, soft seed, and nutraceutical properties with high market value. The draft genome assembly is about 361.76 Mb (N50 = 40 Mb), ∼9.0 Mb more than the genome size estimated by flow cytometry. The genome is 90.9% complete, and only 26.68% of the genome is occupied by transposable elements and has a relative abundance of 369.93 SSRs/Mb of the genome. A total of 30,803 proteins and their putative functions were predicted. Comparative whole-genome analysis revealed Eucalyptus grandis as the nearest neighbor. KEGG-KASS annotations indicated an abundance of genes involved in the biosynthesis of flavonoids, phenylpropanoids, and secondary metabolites, which are responsible for various medicinal properties of pomegranate, including anticancer, antihyperglycemic, antioxidant, and anti-inflammatory activities. The genome and gene annotations provide new insights into the pharmacological properties of the secondary metabolites synthesized in pomegranate. They will also serve as a valuable resource in mining biosynthetic pathways for key metabolites, novel genes, and variations associated with disease resistance, which can facilitate the breeding of new varieties with high yield and superior quality.
Collapse
Affiliation(s)
- Talambedu Usha
- Department of Biochemistry, Bangalore University, Bengaluru, India
| | - Sushil Kumar Middha
- DBT-BIF Facility, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Bengaluru, India
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Arvind Kumar Goyal
- Centre for Bamboo Studies, Department of Biotechnology, Bodoland University, Kokrajhar, India
| | | | - Deepti Saini
- Protein Design Private Limited, Bengaluru, India
| | | | | | | | - Deepak Kumar Saini
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
5
|
Bashyal BM, Rohith M, Parmar P, Darshan K, Sunani SK, Aggarwal R. Biology and Management of Ustilaginoidea virens Causing False Smut Disease of Rice (Oryza sativa L.). Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Filho JAF, Rosolen RR, Almeida DA, de Azevedo PHC, Motta MLL, Aono AH, dos Santos CA, Horta MAC, de Souza AP. Trends in biological data integration for the selection of enzymes and transcription factors related to cellulose and hemicellulose degradation in fungi. 3 Biotech 2021; 11:475. [PMID: 34777932 PMCID: PMC8548487 DOI: 10.1007/s13205-021-03032-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Fungi are key players in biotechnological applications. Although several studies focusing on fungal diversity and genetics have been performed, many details of fungal biology remain unknown, including how cellulolytic enzymes are modulated within these organisms to allow changes in main plant cell wall compounds, cellulose and hemicellulose, and subsequent biomass conversion. With the advent and consolidation of DNA/RNA sequencing technology, different types of information can be generated at the genomic, structural and functional levels, including the gene expression profiles and regulatory mechanisms of these organisms, during degradation-induced conditions. This increase in data generation made rapid computational development necessary to deal with the large amounts of data generated. In this context, the origination of bioinformatics, a hybrid science integrating biological data with various techniques for information storage, distribution and analysis, was a fundamental step toward the current state-of-the-art in the postgenomic era. The possibility of integrating biological big data has facilitated exciting discoveries, including identifying novel mechanisms and more efficient enzymes, increasing yields, reducing costs and expanding opportunities in the bioprocess field. In this review, we summarize the current status and trends of the integration of different types of biological data through bioinformatics approaches for biological data analysis and enzyme selection.
Collapse
Affiliation(s)
- Jaire A. Ferreira Filho
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Rafaela R. Rosolen
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Deborah A. Almeida
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Paulo Henrique C. de Azevedo
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Maria Lorenza L. Motta
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Alexandre H. Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Clelton A. dos Santos
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| | - Maria Augusta C. Horta
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Anete P. de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
- Department of Plant Biology, Institute of Biology, UNICAMP, Universidade Estadual de Campinas, Campinas, SP 13083-875 Brazil
| |
Collapse
|
7
|
Sharanabasav H, Pramesh D, Prasannakumar MK, Chidanandappa E, Yadav MK, Ngangkham U, Parivallal B, Raghavendra BT, Manjunatha C, Sharma SK, Karthik N. Morpho-molecular and mating-type locus diversity of Ustilaginoidea virens: an incitant of false smut of rice from Southern parts of India. J Appl Microbiol 2021; 131:2372-2386. [PMID: 33772985 DOI: 10.1111/jam.15087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/17/2021] [Accepted: 03/21/2021] [Indexed: 11/30/2022]
Abstract
AIMS To characterize the geo-distinct isolates of Ustilaginoidea virens for morpho-molecular and mating-type locus diversity. METHODS AND RESULTS Sixty-one isolates of U. virens collected from Southern India exhibited significant diversity in mycelial width (3·45-5·50 µm), colony colour (yellow, pale yellow, and white), and growth pattern (thick leather mat, raised-fluffy, flat-fluffy, and raised). Field-borne chlamydospores of each isolate were significantly smaller in size (3·34-5·26 µm2 ) compared to those formed on culture media (18·6-100·89 µm2 ). The phylogenetic study based on internal transcribed sequences revealed two clusters; however, most isolates (n = 54) were grouped in cluster-I, indicating common ancestral origin. We also identified 42 haplotypes; among them, Hap_3 has the highest number of isolates (n = 19). Mating-type locus (MAT1) analysis revealed all sixty-one isolates as heterothallic, wherein 37 and 24 isolates belonging to MAT1-1-1 and MAT1-2-1 heterothallic mating types, respectively. The microsynteny analysis of MAT1 loci of one of the Indian strain (Uv-Gvt) along with Uv-8b (China) strain revealed synteny conservation at MAT1 locus, which is flanked by conserved genes SLA2 and a hypothetical protein in the upstream and APN2, COX12 and APC5 in the downstream of the locus. CONCLUSIONS Morpho-molecular study revealed the significant diversity among geo-distinct isolates, and MAT1 loci analysis indicated the distribution of heterothallic mating types in south Indian paddy fields. And also, complete synteny conservation between Indian and Chinese strain was observed at the MAT1 locus. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report describing the sexuality of Indian strains of the U. virens, which would help better understand the genetic diversity of the U. virens prevailing in Southern India and aid in developing resistant rice cultivars against this pathogen population.
Collapse
Affiliation(s)
- H Sharanabasav
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, India
| | - D Pramesh
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, India
| | - M K Prasannakumar
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore, India
| | - E Chidanandappa
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, India
| | - M K Yadav
- ICAR-National Rice Research Institute, Cuttack, India
| | - U Ngangkham
- ICAR-Research Complex for NEH Region Umia, Meghalaya, India
| | - B Parivallal
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore, India
| | - B T Raghavendra
- Department of Plant Pathology, University of Agricultural Sciences, Raichur, India
| | - C Manjunatha
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, India
| | - S K Sharma
- ICAR-Research Complex for NEH Region, Imphal Center, Manipur, India
| | - N Karthik
- University of Madras, Chennai, India
| |
Collapse
|