1
|
Bajpai S, Nemade PR. An integrated biorefinery approach for the valorization of water hyacinth towards circular bioeconomy: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39494-39536. [PMID: 36787076 DOI: 10.1007/s11356-023-25830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Water hyacinth (WH) has become a considerable concern for people across the globe due to its environmental and socio-economic hazards. Researchers are still trying to control this aquatic weed effectively without other environmental or economic losses. Research on WH focuses on converting this omnipresent excessive biomass into value-added products. The potential use of WH for phytoremediation and utilizing waste biomass in various industries, including agriculture, pharmaceuticals, and bioenergy, has piqued interest. The use of waste WH biomass as a feedstock for producing bioenergy and value-added chemicals has emerged as an eco-friendly step towards the circular economy concept. Here, we have discussed the extraction of bio-actives and cellulose as primary bioproducts, followed by a detailed discussion on different biomass conversion routes to obtain secondary bioproducts. The suggested multi-objective approach will lead to cost-effective and efficient utilization of waste WH biomass. Additionally, the present review includes a discussion of the SWOT analysis for WH biomass and the scope for future studies. An integrated biorefinery scheme is proposed for the holistic utilization of this feedstock in a cascading manner to promote the sustainable and zero-waste circular bio-economy concept.
Collapse
Affiliation(s)
- Shruti Bajpai
- Institute of Chemical Technology, Marathwada Campus, Jalna, 431 203, India
| | - Parag R Nemade
- Institute of Chemical Technology, Marathwada Campus, Jalna, 431 203, India.
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400 019, India.
| |
Collapse
|
2
|
Abeysuriya DI, Sethunga GSMDP, Rathnayake M. Process simulation-based scenario analysis of scaled-up bioethanol production from water hyacinth. BIOMASS CONVERSION AND BIOREFINERY 2023:1-16. [PMID: 36817515 PMCID: PMC9923660 DOI: 10.1007/s13399-023-03891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Water hyacinth (WH) is an aquatic weed with an experimentally proven potential as a feedstock for bioethanol production. Unlike other bioethanol feedstocks, water hyacinth has no requirement for land use and resource consumption for cultivation. This study evaluates scaled-up bioethanol production process routes, modelled using the Aspen Plus process simulator to analyse the process performance of water hyacinth as a bioethanol feedstock. Four process scenarios are developed by combining two different feedstock pretreatment methods (i.e., alkali pretreatment and diluted acid pretreatment) and bioethanol dehydration techniques (i.e., azeotropic distillation and extractive distillation). Mass and energy flows of the four scenarios are comparatively analysed. Results show that the alkali pretreatment method provides a higher bioethanol yield (i.e., 254 L/tonne-WH) compared with the dilute acid pretreatment method (i.e., 210 L/tonne-WH). In addition, the process route combining alkali pretreatment and extractive dehydration techniques indicates the least process energy consumption of 45,310 MJ/m3 of bioethanol. The process energy flow analysis evaluates two energy sustainability indicators, i.e., net energy gain and renewability factor, with further interpretation of variation effects of the key process parameters through a sensitivity analysis. The feasible ways of utilising water hyacinth as a fuel-grade bioethanol feedstock for industrial-scale production are discussed. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13399-023-03891-w.
Collapse
Affiliation(s)
| | - G. S. M. D. P. Sethunga
- Department of Chemical and Process Engineering, University of Moratuwa, Katubedda, Sri Lanka
| | - Mahinsasa Rathnayake
- Department of Chemical and Process Engineering, University of Moratuwa, Katubedda, Sri Lanka
| |
Collapse
|
3
|
Chysirichote T, Phaiboonsilpa N, Laosiripojana N. High Production of Cellulase and Xylanase in Solid-State Fermentation by Trichoderma reesei Using Spent Copra and Wheat Bran in Rotary Bioreactor. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Teerin Chysirichote
- Department of Food Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, 1 Chalongkrung Rd. Ladkrabang, Bangkok 10520, Thailand
| | - Natthanon Phaiboonsilpa
- Department of Food Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, 1 Chalongkrung Rd. Ladkrabang, Bangkok 10520, Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut’s University of Technology Thonburi, 126 Prachauthit Rd, Bangmod, Tungkru, Bangkok 10140, Thailand
| |
Collapse
|
4
|
Thermochemical and Enzymatic Saccharification of Water Hyacinth Biomass into Fermentable Sugars. Processes (Basel) 2022. [DOI: 10.3390/pr10020210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Water hyacinth (WH) is a free-floating perennial aquatic plant that is considered a pest, due to its rapid grown rate and detrimental effects on environment and human health. It is nearly impossible to control WH growth, with mechanical extraction being the most acceptable control method; nevertheless, it is costly and labor-intensive. WH lignocellulosic biomass represents a desirable feedstock for the sustainable production of liquid fuels and chemical products. In this work, optimal conditions of thermochemical pretreatment for the release of reducing sugars (RS) from WH biomass were established: 0.15 mm of particle size, 50 g of dried solid/L of H2SO4 (3% w/v) and 20 min of heating time at 121 °C. Applying this pretreatment, a conversion of 84.12% of the hemicellulose fraction in the raw WH biomass into reducing sugars (277 ± 1.40 mg RS/g DWH) was reached. The resulting pretreated biomass of WH (PBWH) was enzymatically hydrolyzed by using six enzymatic complexes (all from Novozymes). Among them, NS22118 (beta-glucosidase) and Cellic® CTec2 (cellulase and hemicellulose complex) achieved higher saccharifications. By using NS22118 or a mixture of NS22118 and Cellic® CTec2, PBWH conversion into RS was complete. Monosaccharides released after pretreatment and enzymatic hydrolysis were mostly pentoses (arabinose and xylose) and hexoses (glucose), respectively.
Collapse
|
5
|
Ezzariai A, Hafidi M, Ben Bakrim W, Kibret M, Karouach F, Sobeh M, Kouisni L. Identifying Advanced Biotechnologies to Generate Biofertilizers and Biofuels From the World's Worst Aquatic Weed. Front Bioeng Biotechnol 2022; 9:769366. [PMID: 35004639 PMCID: PMC8727915 DOI: 10.3389/fbioe.2021.769366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Water hyacinth (Eichhornia crassipes L.) was introduced as an invasive plant in freshwater bodies more particularly in Asia and Africa. This invasive plant grows rapidly and then occupies a huge layer of freshwater bodies. Hence, challenges are facing many countries for implementing suitable approaches for the valorization of the world's worst aquatic weed, and water hyacinth (WH). A critical and up-to-date review article has been conducted for more than 1 year, based on more than 100 scientific journal articles, case studies, and other scientific reports. Worldwide distribution of WH and the associated social, economic, and environmental impacts were described. In addition, an extensive evaluation of the most widely used and innovative valorization biotechnologies, leading to the production of biofertilizer and bioenergy from WH, and was dressed. Furthermore, an integrated search was used in order to examine the related advantages and drawbacks of each bioprocess, and future perspectives stated. Aerobic and anaerobic processes have their specific basic parameters, ensuring their standard performances. Composting was mostly used even at a large scale, for producing biofertilizers from WH. Nevertheless, this review explored some critical points to better optimize the conditions (presence of pollutants, inoculation, and duration) of composting. WH has a high potential for biofuel production, especially by implementing several pretreatment approaches. This review highlighted the combined pretreatment (physical-chemical-biological) as a promising approach to increase biofuel production. WH valorization must be in large quantities to tackle its fast proliferation and to ensure the generation of bio-based products with significant revenue. So, a road map for future researches and applications based on an advanced statistical study was conducted. Several recommendations were explored in terms of the choice of co-substrates, initial basic parameters, and pretreatment conditions and all crucial conditions for the production of biofuels from WH. These recommendations will be of a great interest to generate biofertilizers and bioenergy from WH, especially within the framework of a circular economy.
Collapse
Affiliation(s)
- Amine Ezzariai
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Mohamed Hafidi
- Laboratoire Biotechnologies Microbiennes, Agrosciences et Environnement (BioMagE), Unité de Recherche Labellisée, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco.,Agrobiosciences Department, Mohammed VI Polytechnic University, Benguérir, Morocco
| | - Widad Ben Bakrim
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laayoune, Morocco.,Agrobiosciences Department, Mohammed VI Polytechnic University, Benguérir, Morocco
| | - Mulugeta Kibret
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laayoune, Morocco.,Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Fadoua Karouach
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Mansour Sobeh
- Agrobiosciences Department, Mohammed VI Polytechnic University, Benguérir, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laayoune, Morocco
| |
Collapse
|