1
|
Riaz A, Qin Y, Zheng Q, Chen X, Jiang W, Riaz B, Xiao N, Wu X, Qiu X, Xu J, Chen G, Chen ZH, Deng F, Zeng F. Cr(VI) behaves differently than Cr(III) in the uptake, translocation and detoxification in rice roots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174736. [PMID: 39029762 DOI: 10.1016/j.scitotenv.2024.174736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Excessive accumulation of chromium (Cr) causes severe damage to both physiological and biochemical processes and consequently growth repression in plants. Hexavalent chromium [Cr(VI)]-elicited alterations in plants have been widely elucidated at either physiological or molecular level, whereas little is known about trivalent chromium [Cr(III)]. Here, we found that both Cr(III) and Cr(VI) significantly inhibited root growth in rice plants. However, rice plants under Cr(VI) showed significantly less inhibition in root growth than those under Cr(III) at low levels, which might be attributed to the different hormetic effects of Cr(III) and Cr(VI) on rice plants. It was unexpected that Cr(III) could be actively taken up by rice roots similarly to Cr(VI); whereas they exhibited different kinetic uptake patterns. Furthermore, root-to-shoot Cr translocation under Cr(VI) was much lower than that under Cr(III). These results indicate that the uptake, translocation, and toxicity of Cr(III) differed greatly from those of Cr(VI). Transcriptome profiling of rice roots revealed that a series of gene families involved in detoxification, including ATP-binding cassette (ABC) transporters, multidrug and toxic compound extrusion proteins (MATEs), and Tau class glutathione S-transferases (GSTUs), were significantly associated with Cr accumulation and detoxification in rice roots. In addition, much more members of these gene families were upregulated by Cr(VI) compared to Cr(III), suggesting their vital roles in Cr uptake, translocation, and detoxification, especially under Cr(VI) stress. Further comparison of gstu9 and gstu10/50 mutants with their wild type confirmed that GSTUs play complex roles in the intracellular Cr transport and redox homeostasis during Cr(III) or Cr(VI) stress. Taken together, our findings provides new insights into the differential behaviors of Cr(III) and Cr(VI) in rice roots, as well as new candidate genes such as OsABCs and OsGSTUs, to further elucidate the mechanisms of the uptake, translocation, and detoxification of Cr(III) and Cr(VI).
Collapse
Affiliation(s)
- Adeel Riaz
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China; Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Yuan Qin
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China; Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qingfeng Zheng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China; Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xuan Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China; Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Jiang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China; Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Bisma Riaz
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China; Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Nayun Xiao
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China; Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaojian Wu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China; Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xianjin Qiu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China; Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Fenglin Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China; Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China.
| | - Fanrong Zeng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China; Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China.
| |
Collapse
|
2
|
Lv W, Jiang H, Cao Q, Ren H, Wang X, Wang Y. A tau class glutathione S-transferase in tea plant, CsGSTU45, facilitates tea plant susceptibility to Colletotrichum camelliae infection mediated by jasmonate signaling pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1356-1376. [PMID: 38059663 DOI: 10.1111/tpj.16567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Tea plant [Camellia sinensis (L.) O. Kuntze], as one of the most important commercial crops, frequently suffers from anthracnose caused by Colletotrichum camelliae. The plant-specific tau (U) class of glutathione S-transferases (GSTU) participates in ROS homeostasis. Here, we identified a plant-specific GST tau class gene from tea plant, CsGSTU45, which is induced by various stresses, including C. camelliae infection, by analyzing multiple transcriptomes. CsGSTU45 plays a negative role in disease resistance against C. camelliae by accumulating H2 O2 . JA negatively regulates the resistance of tea plants against C. camelliae, which depends on CsGSTU45. CsMYC2.2, which is the key regulator in the JA signaling pathway, directly binds to and activates the promoter of CsGSTU45. Furthermore, silencing CsMYC2.2 increased disease resistance associated with reduced transcript and protein levels of CsGSTU45, and decreased contents of H2 O2 . Therefore, CsMYC2.2 suppresses disease resistance against C. camelliae by binding to the promoter of the CsGSTU45 gene and activating CsGSTU45. CsJAZ1 interacts with CsMYC2.2. Silencing CsJAZ1 attenuates disease resistance, upregulates the expression of CsMYC2.2 elevates the level of the CsGSTU45 protein, and promotes the accumulation of H2 O2 . As a result, CsJAZ1 interacts with CsMYC2.2 and acts as its repressor to suppress the level of CsGSTU45 protein, eventually enhancing disease resistance in tea plants. Taken together, the results show that the JA signaling pathway mediated by CsJAZ1-CsMYC2.2 modulates tea plant susceptibility to C. camelliae by regulating CsGSTU45 to accumulate H2 O2 .
Collapse
Affiliation(s)
- Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Hong Jiang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Qinghai Cao
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Henze Ren
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Xinchao Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, Zhejiang, China
| | - Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, Zhejiang, China
| |
Collapse
|
3
|
Nguyen DK, Nguyen TP, Li YR, Ohme-Takagi M, Liu ZH, Ly TT, Nguyen VA, Trinh NN, Huang HJ. Comparative study of two indoor microbial volatile pollutants, 2-Methyl-1-butanol and 3-Methyl-1-butanol, on growth and antioxidant system of rice (Oryza sativa) seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116055. [PMID: 38340597 DOI: 10.1016/j.ecoenv.2024.116055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
2-Methyl-1-butanol (2MB) and 3-Methyl-1-butanol (3MB) are microbial volatile organic compounds (VOCs) and found in indoor air. Here, we applied rice as a bioindicator to investigate the effects of these indoor microbial volatile pollutants. A remarkable decrease in germination percentage, shoot and root elongation, as well as lateral root numbers were observed in 3MB. Furthermore, ROS production increased by 2MB and 3MB, suggesting that pentanol isomers could induce cytotoxicity in rice seedlings. The enhancement of peroxidase (POD) and catalase (CAT) activity provided evidence that pentanol isomers activated the enzymatic antioxidant scavenging systems, with a more significant effect observed in 3MB. Furthermore, 3MB induced higher activity levels of glutathione (GSH), oxidized glutathione (GSSG), and the GSH/GSSG ratio in rice compared to the levels induced by 2MB. Additionally, qRT-PCR analysis showed more up-regulation in the expression of glutaredoxins (GRXs), peroxiredoxins (PRXs), thioredoxins (TRXs), and glutathione S-transferases (GSTUs) genes in 3MB. Taking the impacts of pentanol isomers together, the present study suggests that 3MB exhibits more cytotoxic than 2MB, as such has critical effects on germination and the early seedling stage of rice. Our results provide molecular insights into how isomeric indoor microbial volatile pollutants affect plant growth through airborne signals.
Collapse
Affiliation(s)
- Diem-Kieu Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tri-Phuong Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Rong Li
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Masaru Ohme-Takagi
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Zin-Huang Liu
- Graduate Program in Translational Agricultural Sciences, NCKU and Academia Sinica, Taiwan
| | - Thach-Thao Ly
- Graduate Program in Translational Agricultural Sciences, NCKU and Academia Sinica, Taiwan
| | - Van-Anh Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Intellectual Property Office of Vietnam, Thanh Xuan District, Ha Noi, Vietnam
| | - Ngoc-Nam Trinh
- Industrial University of Ho Chi Minh City, Go Vap District, Ho Chi Minh, Vietnam
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan; Graduate Program in Translational Agricultural Sciences, NCKU and Academia Sinica, Taiwan.
| |
Collapse
|
4
|
Pandey A, Wu LB, Murugaiyan V, Schaaf G, Ali J, Frei M. Differential effects of arsenite and arsenate on rice (Oryza sativa) plants differing in glutathione S-transferase gene expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92268-92281. [PMID: 37486470 PMCID: PMC10447600 DOI: 10.1007/s11356-023-28833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Contamination of paddy soils with arsenic (As) can cause phytotoxicity in rice and increase the accumulation of arsenic in grains. The uptake and accumulation of As in rice depends on the different As species present in the soil. Plants detoxify As by conjugating and sequestering xenobiotic compounds into vacuoles using various enzymes. However, the severity of damage induced by arsenite (As(III)) and arsenate (As(V)), as well as the roles of glutathione S-transferase in detoxifying these As species in rice, are not fully understood. In this study, we developed plant materials overexpressing a glutathione S-transferase gene OsGSTU40 under the control of the maize UBIL promoter. Through systematic investigations of both wild-type Nipponbare (Oryza sativa L., ssp. japonica) and OsGSTU40 overexpression lines under chronic or acute stress of As, we aimed to understand the toxic effects of both As(III) and As(V) on rice plants at the vegetative growth stage. We hypothesized that (i) As(III) and As(V) have different toxic effects on rice plants and (ii) OsGSTU40 played positive roles in As toxicity tolerance. Our results showed that As(III) was more detrimental to plant growth than As(V) in terms of plant growth, biomass, and lipid peroxidation in both chronic and acute exposure. Furthermore, overexpression of OsGSTU40 led to better plant growth even though uptake of As(V), but not As(III), into shoots was enhanced in transgenic plants. In acute As(III) stress, transgenic plants exhibited a lower level of lipid peroxidation than wild-type plants. The element composition of plants was dominated by the different As stress treatments rather than by the genotype, while the As concentration was negatively correlated with phosphorus and silicon. Overall, our findings suggest that As(III) is more toxic to plants than As(V) and that glutathione S-transferase OsGSTU40 differentially affects plant reactions and tolerance to different species of arsenic.
Collapse
Affiliation(s)
- Ambika Pandey
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University Giessen, 35390, Giessen, Germany
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, 4031, Laguna, Philippines
| | - Lin-Bo Wu
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University Giessen, 35390, Giessen, Germany
| | - Varunseelan Murugaiyan
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, 4031, Laguna, Philippines
| | - Gabriel Schaaf
- Institute of Crop Sciences and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, 4031, Laguna, Philippines
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University Giessen, 35390, Giessen, Germany.
| |
Collapse
|
5
|
Cui Z, Xue C, Mei Q, Xuan Y. Malectin Domain Protein Kinase (MDPK) Promotes Rice Resistance to Sheath Blight via IDD12, IDD13, and IDD14. Int J Mol Sci 2022; 23:ijms23158214. [PMID: 35897795 PMCID: PMC9331740 DOI: 10.3390/ijms23158214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
Sheath blight (ShB) caused by Rhizoctonia solani is a major disease of rice, seriously affecting yield; however, the molecular defense mechanism against ShB remains unclear. A previous transcriptome analysis of rice identified that R. solani inoculation significantly induced MDPK. Genetic studies using MDPK RNAi and overexpressing plants identified that MDPK positively regulates ShB resistance. This MDPK protein was found localized in the endoplasmic reticulum (ER) and Golgi apparatus. Yeast one-hybrid assay, electrophoresis mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP) showed that the intermediate domain proteins IDD12, IDD13, and IDD14 bind to the MDPK promoter. Moreover, IDD14 was found to interact with IDD12 and IDD13 to form a transcription complex to activate MDPK expression. The three IDDs demonstrated an additive effect on MDPK activation. Further genetic studies showed that the IDD13 and IDD14 single mutants were more susceptible to ShB but not IDD12, while IDD12, IDD13, and IDD14 overexpressing plants were less susceptible than the wild-type plants. The IDD12, IDD13, and IDD14 mutants also proved the additive effect of the three IDDs on MDPK expression, which regulates ShB resistance in rice. Notably, MDPK overexpression maintained normal yield levels in rice. Thus, our study proves that IDD12, IDD13, and IDD14 activate MDPK to enhance ShB resistance in rice. These results improve our knowledge of rice defense mechanisms and provide a valuable marker for resistance breeding.
Collapse
Affiliation(s)
- Zhibo Cui
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (Z.C.); (C.X.)
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Caiyun Xue
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (Z.C.); (C.X.)
| | - Qiong Mei
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (Z.C.); (C.X.)
- Correspondence: (Q.M.); (Y.X.); Tel.: +86-24-88342065 (Q.M. &Y.X.)
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (Z.C.); (C.X.)
- Correspondence: (Q.M.); (Y.X.); Tel.: +86-24-88342065 (Q.M. &Y.X.)
| |
Collapse
|
6
|
Senapati M, Tiwari A, Sharma N, Chandra P, Bashyal BM, Ellur RK, Bhowmick PK, Bollinedi H, Vinod KK, Singh AK, Krishnan SG. Rhizoctonia solani Kühn Pathophysiology: Status and Prospects of Sheath Blight Disease Management in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:881116. [PMID: 35592572 PMCID: PMC9111526 DOI: 10.3389/fpls.2022.881116] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/06/2022] [Indexed: 05/14/2023]
Abstract
Sheath blight caused by necrotrophic fungus Rhizoctonia solani Kühn is one of the most serious diseases of rice. Use of high yielding semi dwarf cultivars with dense planting and high dose of nitrogenous fertilizers accentuates the incidence of sheath blight in rice. Its diverse host range and ability to remain dormant under unfavorable conditions make the pathogen more difficult to manage. As there are no sources of complete resistance, management through chemical control has been the most adopted method for sheath blight management. In this review, we provide an up-to-date comprehensive description of host-pathogen interactions, various control measures such as cultural, chemical, and biological as well as utilizing host plant resistance. The section on utilizing host plant resistance includes identification of resistant sources, mapping QTLs and their validation, identification of candidate gene(s) and their introgression through marker-assisted selection. Advances and prospects of sheath blight management through biotechnological approaches such as overexpression of genes and gene silencing for transgenic development against R. solani are also discussed.
Collapse
Affiliation(s)
- Manoranjan Senapati
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ajit Tiwari
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neha Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Priya Chandra
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bishnu Maya Bashyal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ranjith Kumar Ellur
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Haritha Bollinedi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K. K. Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ashok Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - S. Gopala Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
7
|
Tiwari M, Gautam N, Indoliya Y, Kidwai M, Mishra AK, Chakrabarty D. A tau class GST, OsGSTU5, interacts with VirE2 and modulates the Agrobacterium-mediated transformation in rice. PLANT CELL REPORTS 2022; 41:873-891. [PMID: 35067774 DOI: 10.1007/s00299-021-02824-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/08/2021] [Indexed: 05/27/2023]
Abstract
OsGSTU5 interacts and glutathionylates the VirE2 protein of Agrobacterium and its (OsGSTU5) overexpression and downregulation showed a low and high AMT efficiency in rice, respectively. During Agrobacterium-mediated transformation (AMT), T-DNA along with several virulence proteins such as VirD2, VirE2, VirE3, VirD5, and VirF enter the plant cytoplasm. VirE2 serves as a single-stranded DNA binding (SSB) protein that assists the cytoplasmic trafficking of T-DNA inside the host cell. Though the regulatory roles of VirE2 have been established, the cellular reaction of their host, especially in monocots, has not been characterized in detail. This study identified a cellular interactor of VirE2 from the cDNA library of rice. The identified plant protein encoded by the gene cloned from rice was designated OsGSTU5, it interacted specifically with VirE2 in the host cytoplasm. OsGSTU5 was upregulated during Agrobacterium infection and involved in the post-translational glutathionylation of VirE2 (gVirE2). Interestingly, the in silico analysis showed that the 'gVirE2 + ssDNA' complex was structurally less stable than the 'VirE2 + ssDNA' complex. The gel shift assay also confirmed the attenuated SSB property of gVirE2 over VirE2. Moreover, knock-down and overexpression of OsGSTU5 in rice showed increased and decreased T-DNA expression, respectively after Agrobacterium infection. The present finding establishes the role of OsGSTU5 as an important target for modulation of AMT efficiency in rice.
Collapse
Affiliation(s)
- Madhu Tiwari
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Neelam Gautam
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yuvraj Indoliya
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Maria Kidwai
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Tiwari M, Kidwai M, Dutta P, Narayan S, Gautam N, Chawda K, Shirke PA, Mishra AK, Chakrabarty D. A tau class glutathione-S-transferase (OsGSTU5) confers tolerance against arsenic toxicity in rice by accumulating more arsenic in root. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128100. [PMID: 34954436 DOI: 10.1016/j.jhazmat.2021.128100] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/03/2021] [Accepted: 12/15/2021] [Indexed: 05/27/2023]
Abstract
Arsenic (As) considered as one of the hazardous metalloid that hampers various physiological activities in rice. To study the mechanism of As tolerance in rice, one differentially expressed tau class glutathione-S-transferase (OsGSTU5) has been selected and transgenic rice plants with knockdown (KD) and overexpressing (OE) OsGSTU5 were generated. Our results suggested that KD lines became less tolerant to As stress than WT plants, while OE lines showed enhanced tolerance to As. Under As toxicity, OE and KD lines showed enhanced and reduced antioxidant activities such as, SOD, PRX and catalase, respectively indicating its role in ROS homeostasis. In addition, higher malondialdehyde content, poor photosynthetic parameters and higher reactive oxygen species (ROS) in KD plant, suggests that knockdown of OsGSTU5 renders KD plants more susceptible to oxidative damage. Also, the relative expression profile of various transporters such as OsABCC1 (As sequestration), Lsi2 and Lsi6 (As translocaters) and GSH dependent activity of GSTU5 suggests that GSTU5 might help in chelation of As with GSH and sequester it into the root vacuole using OsABCC1 transporter and thus limits the upward translocation of As towards shoot. This study suggests the importance of GSTU5 as a good target to improve the As tolerance in rice.
Collapse
Affiliation(s)
- Madhu Tiwari
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - Maria Kidwai
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Prasanna Dutta
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiv Narayan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Neelam Gautam
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Khushboo Chawda
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pramod Arvind Shirke
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Lin QJ, Chu J, Kumar V, Yuan DP, Li ZM, Mei Q, Xuan YH. Protein Phosphatase 2A Catalytic Subunit PP2A-1 Enhances Rice Resistance to Sheath Blight Disease. Front Genome Ed 2021; 3:632136. [PMID: 34713255 PMCID: PMC8525387 DOI: 10.3389/fgeed.2021.632136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/08/2021] [Indexed: 11/22/2022] Open
Abstract
Rice (Oryza sativa) production is damaged to a great extent by sheath blight disease (ShB). However, the defense mechanism in rice against this disease is largely unknown. Previous transcriptome analysis identified a significantly induced eukaryotic protein phosphatase 2A catalytic subunit 1 (PP2A-1) after the inoculation of Rhizoctonia solani. Five genes encoding PP2A exist in rice genome, and these five genes are ubiquitously expressed in different tissues and stages. Inoculation of R. solani showed that the genome edited pp2a-1 mutants using the CRISPR/Cas9 were more susceptible to ShB than the wild-type control, but other PP2A gene mutants exhibited similar response to ShB compared to wild-type plants. In parallel, PP2A-1 expression level was higher in the activation tagging line, and PP2A-1 overexpression inhibited plant height and promoted the resistance to ShB. PP2A-1-GFP was localized in the cytoplasm and nucleus. In addition, R. solani-dependent induction kinetics of pathogen-related genes PBZ1 and PR1b was lower in pp2a-1 mutants but higher in PP2A-1 activation line compared to those in the wild-type. In conclusion, our analysis shows that PP2A-1 is a member of protein phosphatase, which regulates rice resistance to ShB. This result broadens the understanding of the defense mechanism against ShB and provides a potential target for rice breeding for disease resistance.
Collapse
Affiliation(s)
- Qiu Jun Lin
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jin Chu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Vikranth Kumar
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - De Peng Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhi Min Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Qiong Mei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Chu J, Xu H, Dong H, Xuan YH. Loose Plant Architecture 1-Interacting Kinesin-like Protein KLP Promotes Rice Resistance to Sheath Blight Disease. RICE (NEW YORK, N.Y.) 2021; 14:60. [PMID: 34215911 PMCID: PMC8253871 DOI: 10.1186/s12284-021-00505-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/20/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Sheath blight disease (ShB) is a destructive disease affecting rice production. Previously, we have reported that Loose Plant Architecture 1 (LPA1) promotes resistance to ShB. However, the mechanisms by which LPA1 confers resistance against this disease have not been extensively investigated. Notably, interactors that regulate LPA-1 activity remain elusive. FINDINGS In this study, we identified the interaction of kinesin-like protein (KLP) with LPA1 in the nucleus of rice cells by yeast two-hybrid, bimolecular fluorescent complimentary (BiFC), and co-immunoprecipitation (co-IP) assays. To investigate the role of KLP in promoting resistance to ShB, wild-type, klp mutant, and KLP overexpressor (KLP OX) rice plants were inoculated with Rhizoctonia solani AG1-IA. The results indicated that, compared with the wild-type control, klp mutants were more susceptible while KLP OX plants were less susceptible to ShB. Since LPA1 transcriptionally activates PIN-FORMED 1a (PIN1a), we examined the expression of 8 related PIN genes. The results showed that only the expression of PIN1a and PIN3b coincided with KLP expression levels. In addition, a chromatin immunoprecipitation (ChIP) assay showed that KLP bound directly to the promoter region of PIN1a but not of PIN3b. Transient expression assays confirmed that LPA1 and KLP transcriptionally activate PIN1a, and that coexpression of KLP and LPA1 had an additive effect on the activation of PIN1a, suggesting that KLP enhances LPA1 transcriptional activation activity. CONCLUSIONS Taken together, our results show that KLP is a novel LPA1 interactor that promotes resistance of rice to ShB.
Collapse
Affiliation(s)
- Jin Chu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Han Xu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Hai Dong
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China.
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
11
|
Srivastava D, Tiwari M, Dutta P, Singh P, Chawda K, Kumari M, Chakrabarty D. Chromium Stress in Plants: Toxicity, Tolerance and Phytoremediation. SUSTAINABILITY 2021; 13:4629. [DOI: 10.3390/su13094629] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extensive industrial activities resulted in an increase in chromium (Cr) contamination in the environment. The toxicity of Cr severely affects plant growth and development. Cr is also recognized as a human carcinogen that enters the human body via inhalation or by consuming Cr-contaminated food products. Taking consideration of Cr enrichment in the environment and its toxic effects, US Environmental Protection Agency and Agency for Toxic Substances and Disease Registry listed Cr as a priority pollutant. In nature, Cr exists in various valence states, including Cr(III) and Cr(VI). Cr(VI) is the most toxic and persistent form in soil. Plants uptake Cr through various transporters such as phosphate and sulfate transporters. Cr exerts its effect by generating reactive oxygen species (ROS) and hampering various metabolic and physiological pathways. Studies on genetic and transcriptional regulation of plants have shown the various detoxification genes get up-regulated and confer tolerance in plants under Cr stress. In recent years, the ability of the plant to withstand Cr toxicity by accumulating Cr inside the plant has been recognized as one of the promising bioremediation methods for the Cr contaminated region. This review summarized the Cr occurrence and toxicity in plants, role of detoxification genes in Cr stress response, and various plants utilized for phytoremediation in Cr-contaminated regions.
Collapse
Affiliation(s)
- Dipali Srivastava
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Madhu Tiwari
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Prasanna Dutta
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puja Singh
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Khushboo Chawda
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Monica Kumari
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. BIOLOGY 2021; 10:267. [PMID: 33810535 PMCID: PMC8066271 DOI: 10.3390/biology10040267] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
The stationary life of plants has led to the evolution of a complex gridded antioxidant defence system constituting numerous enzymatic components, playing a crucial role in overcoming various stress conditions. Mainly, these plant enzymes are superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferases (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR), which work as part of the antioxidant defence system. These enzymes together form a complex set of mechanisms to minimise, buffer, and scavenge the reactive oxygen species (ROS) efficiently. The present review is aimed at articulating the current understanding of each of these enzymatic components, with special attention on the role of each enzyme in response to the various environmental, especially abiotic stresses, their molecular characterisation, and reaction mechanisms. The role of the enzymatic defence system for plant health and development, their significance, and cross-talk mechanisms are discussed in detail. Additionally, the application of antioxidant enzymes in developing stress-tolerant transgenic plants are also discussed.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Harish
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Lav Sharma
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Francisco Roberto Quiroz-Figueroa
- Laboratorio de Fitomejoramiento Molecular, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-IPN Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes no. 250, Col. San Joachín, C.P., 81101 Guasave, Mexico;
| | - Mukesh Meena
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Vinod Singh Gour
- Amity Institute of Biotechnology, Amity University Rajasthan, NH 11C, Kant Kalwar, Jaipur 303002, India;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| |
Collapse
|
13
|
Li D, Li S, Wei S, Sun W. Strategies to Manage Rice Sheath Blight: Lessons from Interactions between Rice and Rhizoctonia solani. RICE (NEW YORK, N.Y.) 2021; 14:21. [PMID: 33630178 PMCID: PMC7907341 DOI: 10.1186/s12284-021-00466-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Rhizoctonia solani is an important phytopathogenic fungus with a wide host range and worldwide distribution. The anastomosis group AG1 IA of R. solani has been identified as the predominant causal agent of rice sheath blight, one of the most devastating diseases of crop plants. As a necrotrophic pathogen, R. solani exhibits many characteristics different from biotrophic and hemi-biotrophic pathogens during co-evolutionary interaction with host plants. Various types of secondary metabolites, carbohydrate-active enzymes, secreted proteins and effectors have been revealed to be essential pathogenicity factors in R. solani. Meanwhile, reactive oxygen species, phytohormone signaling, transcription factors and many other defense-associated genes have been identified to contribute to sheath blight resistance in rice. Here, we summarize the recent advances in studies on molecular interactions between rice and R. solani. Based on knowledge of rice-R. solani interactions and sheath blight resistance QTLs, multiple effective strategies have been developed to generate rice cultivars with enhanced sheath blight resistance.
Collapse
Affiliation(s)
- Dayong Li
- College of Plant Protection, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Shuai Li
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China
| | - Songhong Wei
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, 110866, Shenyang, Liaoning, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.
- Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|