1
|
Chen Y, Li Y, Gao J, Yu Q, Zhang Y, Zhang J. Perspectives and challenges in developing small molecules targeting purine nucleoside phosphorylase. Eur J Med Chem 2024; 271:116437. [PMID: 38701712 DOI: 10.1016/j.ejmech.2024.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
As a cytosolic enzyme involved in the purine salvage pathway metabolism, purine nucleoside phosphorylase (PNP) plays an important role in a variety of cellular functions but also in immune system, including cell growth, apoptosis and cancer development and progression. Based on its T-cell targeting profile, PNP is a potential target for the treatment of some malignant T-cell proliferative cancers including lymphoma and leukemia, and some specific immunological diseases. Numerous small-molecule PNP inhibitors have been developed so far. However, only Peldesine, Forodesine and Ulodesine have entered clinical trials and exhibited some potential for the treatment of T-cell leukemia and gout. The most recent direction in PNP inhibitor development has been focused on PNP small-molecule inhibitors with better potency, selectivity, and pharmacokinetic property. In this perspective, considering the structure, biological functions, and disease relevance of PNP, we highlight the recent research progress in PNP small-molecule inhibitor development and discuss prospective strategies for designing additional PNP therapeutic agents.
Collapse
Affiliation(s)
- Yangyang Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Li
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Gao
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Quanwei Yu
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yiwen Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
El-Gazzar MGM, Ghorab MM, Amin MA, Korany M, Khedr MA, El-Gazzar MG, Sakr TM. Computational, in vitro and radiation-based in vivo studies on acetamide quinazolinone derivatives as new proposed purine nucleoside phosphorylase inhibitors for breast cancer. Eur J Med Chem 2023; 248:115087. [PMID: 36610250 DOI: 10.1016/j.ejmech.2023.115087] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/25/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
The present work describes a quinazolinone-based lead optimization for the development of novel purine nucleoside phosphorylase (PNP) inhibitors with quinazolinone scaffold. Nineteen compounds were proposed and docked against PNP, the best 14 compounds with highest docking and affinity scores and low RMSD values were synthesized. Synthesis of new quinazolinone derivatives with variable acetamide substituents on two positions on quinazoline ring was performed. The structures assigned to the products were concordant with the microanalytical and spectral data. In vitro cytotoxicity on human breast cancer cell line (MCF7) was performed and identified compound 6g as the most potent with IC50 (0.99 ± 0.11 μM) which was further tested against five different breast cancer cell lines in addition to normal breast cell to determine the selectivity. Compound 6g was subjected to molecular dynamic simulation study, radiolabelling and biodistribution study to investigate its stability and selectivity toward breast cancers. The in vitro PNP inhibition results were aligned with the in silico, cytotoxicity, and biodistribution results where 6g showed the most potent PNP inhibitory activity with IC50 (0.159 ± 0.007 μM) when compared to Peldesine (BCX-34) IC50 (0.041 ± 0.002 μM).
Collapse
Affiliation(s)
- Mostafa G M El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, 11787, Egypt
| | - Mostafa M Ghorab
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, 11787, Egypt.
| | - Mohamed A Amin
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohamed Korany
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohammed A Khedr
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Kuwait
| | - Marwa G El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, 11787, Egypt
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| |
Collapse
|
3
|
Emamian M, Abbaspour A, Shahani T, Biglari A, Sharafi A. Non-viral Suicide Gene Therapy: Cytosine Deaminase Gene Directed by VEGF Promoter and 5-fluorocytosine as a Gene Directed Enzyme/prodrug System in Breast Cancer Model. Drug Res (Stuttg) 2021; 71:395-406. [PMID: 34182589 DOI: 10.1055/a-1488-6054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study investigated the potential of vascular endothelial growth factor (VEGF) promoter to derive cytosine deaminase (CD) transfected by polyamidoamine (G4-PAMAM) dendrimers to 4T1 murine breast cancer cell line as gene-directed enzyme/prodrug therapy. The VEGF promoter and cytosine deaminase gene were cloned into the pEGFP-N1vector from the genomic DNA of 4T1 and E. coli, respectively. The frequency of transfection for VEGF-CD-pEGFP-N1 and pEGFP-N1- CD treated groups was 35±3 and 36±4, respectively. MTT assay was perform to evaluate the cytotoxic effects of converted 5-flurocytosine on 4T1 cells. Also, the optimal concentration of 5-FC in 4T1 cells transfected by VEGF-CD-pEGFP-N1 plasmid was evaluated. The GFP expression of transfected 4T1 cells by VEGF-CD-pEGFP-N1were observed by fluorescent microscopy and flowcytometry. Results demonstrated that the suicide CD gene was successfully expressed in 4T1 cells determined by RT-PCR and GFP expression. A concentration of 200 μg/ml 5-FC was identified as optimal dose of prodrug. Furthermore, the CD/5-FC enzyme/prodrug system not only demonstrated toxicity on transformed 4T1 cells but also exerted a 'bystander effect' determined by MTT assay. The results showed that by 35% transfection with VEGF-CD-pEGFP-N1and CD-pEGFP-N1 plasmids, 80% and 90% inhibition of the cells growth occurred, respectively.
Collapse
Affiliation(s)
- Manouchehr Emamian
- Department of Genetics & Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Akbar Abbaspour
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tina Shahani
- Department of Genetics & Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Biglari
- Department of Genetics & Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|