1
|
Yang Y, Zou Y, Chen X, Sun H, Hua X, Johnston L, Zeng X, Qiao S, Ye C. Metabolic engineering of Escherichia coli for the production of 5-aminolevulinic acid based on combined metabolic pathway modification and reporter-guided mutant selection (RGMS). BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:82. [PMID: 38886801 PMCID: PMC11184883 DOI: 10.1186/s13068-024-02530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND 5-Aminolevulinic acid (ALA) recently received much attention due to its potential application in many fields such as medicine, nutrition and agriculture. Metabolic engineering is an efficient strategy to improve microbial production of 5-ALA. RESULTS In this study, an ALA production strain of Escherichia coli was constructed by rational metabolic engineering and stepwise improvement. A metabolic strategy to produce ALA directly from glucose in this recombinant E. coli via both C4 and C5 pathways was applied herein. The expression of a modified hemARS gene and rational metabolic engineering by gene knockouts significantly improved ALA production from 765.9 to 2056.1 mg/L. Next, we tried to improve ALA production by RGMS-directed evolution of eamA gene. After RGMS, the ALA yield of strain A2-ASK reached 2471.3 mg/L in flask. Then, we aimed to improve the oxidation resistance of cells by overexpressing sodB and katE genes and ALA yield reached 2703.8 mg/L. A final attempt is to replace original promoter of hemB gene in genome with a weaker one to decrease its expression. After 24 h cultivation, a high ALA yield of 19.02 g/L was achieved by 108-ASK in a 5 L fermenter. CONCLUSIONS These results suggested that an industrially competitive strain can be efficiently developed by metabolic engineering based on combined rational modification and optimization of gene expression.
Collapse
Affiliation(s)
- Yuting Yang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Bio-Feed Additives, Beijing, 100193, China
| | - Yuhong Zou
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Bio-Feed Additives, Beijing, 100193, China
| | - Xi Chen
- State Key Laboratory for Agro-Biotechnology, Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Haidong Sun
- National Feed Engineering Technology Research Centre, Beijing, 100193, China
| | - Xia Hua
- State Key Laboratory for Agro-Biotechnology, Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Lee Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN, 56267, USA
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Bio-Feed Additives, Beijing, 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Bio-Feed Additives, Beijing, 100193, China
| | - Changchuan Ye
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, 100193, China.
- Department of Animal Science, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Zdubek A, Maliszewska I. On the Possibility of Using 5-Aminolevulinic Acid in the Light-Induced Destruction of Microorganisms. Int J Mol Sci 2024; 25:3590. [PMID: 38612403 PMCID: PMC11011456 DOI: 10.3390/ijms25073590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial photodynamic inactivation (aPDI) is a method that specifically kills target cells by combining a photosensitizer and irradiation with light at the appropriate wavelength. The natural amino acid, 5-aminolevulinic acid (5-ALA), is the precursor of endogenous porphyrins in the heme biosynthesis pathway. This review summarizes the recent progress in understanding the biosynthetic pathways and regulatory mechanisms of 5-ALA synthesis in biological hosts. The effectiveness of 5-ALA-aPDI in destroying various groups of pathogens (viruses, fungi, yeasts, parasites) was presented, but greater attention was focused on the antibacterial activity of this technique. Finally, the clinical applications of 5-ALA in therapies using 5-ALA and visible light (treatment of ulcers and disinfection of dental canals) were described.
Collapse
Affiliation(s)
| | - Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| |
Collapse
|
3
|
Pu W, Chen J, Zhou Y, Qiu H, Shi T, Zhou W, Guo X, Cai N, Tan Z, Liu J, Feng J, Wang Y, Zheng P, Sun J. Systems metabolic engineering of Escherichia coli for hyper-production of 5‑aminolevulinic acid. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:31. [PMID: 36829220 PMCID: PMC9951541 DOI: 10.1186/s13068-023-02280-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND 5-Aminolevulinic acid (5-ALA) is a promising biostimulant, feed nutrient, and photodynamic drug with wide applications in modern agriculture and therapy. Although microbial production of 5-ALA has been improved realized by using metabolic engineering strategies during the past few years, there is still a gap between the present production level and the requirement of industrialization. RESULTS In this study, pathway, protein, and cellular engineering strategies were systematically employed to construct an industrially competitive 5-ALA producing Escherichia coli. Pathways involved in precursor supply and product degradation were regulated by gene overexpression and synthetic sRNA-based repression to channel metabolic flux to 5-ALA biosynthesis. 5-ALA synthase was rationally engineered to release the inhibition of heme and improve the catalytic activity. 5-ALA transport and antioxidant defense systems were targeted to enhance cellular tolerance to intra- and extra-cellular 5-ALA. The final engineered strain produced 30.7 g/L of 5-ALA in bioreactors with a productivity of 1.02 g/L/h and a yield of 0.532 mol/mol glucose, represent a new record of 5-ALA bioproduction. CONCLUSIONS An industrially competitive 5-ALA producing E. coli strain was constructed with the metabolic engineering strategies at multiple layers (protein, pathway, and cellular engineering), and the strategies here can be useful for developing industrial-strength strains for biomanufacturing.
Collapse
Affiliation(s)
- Wei Pu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jiuzhou Chen
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Yingyu Zhou
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Huamin Qiu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tuo Shi
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Wenjuan Zhou
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Xuan Guo
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Ningyun Cai
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Zijian Tan
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jinhui Feng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
4
|
Luo Z, Pan F, Zhu Y, Du S, Yan Y, Wang R, Li S, Xu H. Synergistic Improvement of 5-Aminolevulinic Acid Production with Synthetic Scaffolds and System Pathway Engineering. ACS Synth Biol 2022; 11:2766-2778. [PMID: 35939037 DOI: 10.1021/acssynbio.2c00157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Engineered synthetic scaffolds to organize metabolic pathway enzymes and system pathway engineering to fine-tune metabolic fluxes play essential roles in microbial production. Here, we first obtained the most favorable combination of key enzymes for 5-aminolevulinic acid (5-ALA) synthesis through the C5 pathway by screening enzymes from different sources and optimizing their combination in different pathways. Second, we successfully constructed a multienzyme complex assembly system with PduA*, which spatially recruits the above three key enzymes for 5-ALA synthesis in a designable manner. By further optimizing the ratio of these key enzymes in synthetic scaffolds, the efficiency of 5-ALA synthesis through the C5 pathway was significantly improved. Then, the competitive metabolism pathway was fine-tuned by rationally designing different antisense RNAs, further significantly increasing 5-ALA titers. Furthermore, for efficient 5-ALA synthesis, obstacles of NADH and NADPH imbalances and feedback inhibition of the synthesis pathway were also overcome through engineering the NADPH regeneration pathway and transport pathway, respectively. Finally, combining these strategies with further fermentation optimization, we achieved a final 5-ALA titer of 11.4 g/L. These results highlight the importance of synthetic scaffolds and system pathway engineering to improve the microbial cell factory production performance.
Collapse
Affiliation(s)
- Zhengshan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Fei Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shanshan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Jiang M, Hong K, Mao Y, Ma H, Chen T, Wang Z. Natural 5-Aminolevulinic Acid: Sources, Biosynthesis, Detection and Applications. Front Bioeng Biotechnol 2022; 10:841443. [PMID: 35284403 PMCID: PMC8913508 DOI: 10.3389/fbioe.2022.841443] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is the key precursor for the biosynthesis of tetrapyrrole compounds, with wide applications in medicine, agriculture and other burgeoning fields. Because of its potential applications and disadvantages of chemical synthesis, alternative biotechnological methods have drawn increasing attention. In this review, the recent progress in biosynthetic pathways and regulatory mechanisms of 5-ALA synthesis in biological hosts are summarized. The research progress on 5-ALA biosynthesis via the C4/C5 pathway in microbial cells is emphasized, and the corresponding biotechnological design strategies are highlighted and discussed in detail. In addition, the detection methods and applications of 5-ALA are also reviewed. Finally, perspectives on potential strategies for improving the biosynthesis of 5-ALA and understanding the related mechanisms to further promote its industrial application are conceived and proposed.
Collapse
Affiliation(s)
- Meiru Jiang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Kunqiang Hong
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yufeng Mao
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hongwu Ma
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|