1
|
Yu Milman P, Gilvanova EA, Aktuganov GE. The improved purification technique for isolation of the novel CGTase from the alkaliphilc strain Caldalkalibacillus mannanilyticus IB-OR17-B1. Prep Biochem Biotechnol 2025; 55:223-229. [PMID: 39106060 DOI: 10.1080/10826068.2024.2386558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Cyclodextrin-glucanotransferase (CGTase, EC 2.4.1.19) is a multifunctional enzyme that catalyzes many enzymatic reactions including cyclization, binding, disproportionation and hydrolysis reactions, playing an important role in the enzymatic synthesis of compounds that are widely used in agriculture, pharmaceuticals, food, chemical and biotechnology industries. The present research is aimed to optimize the purification protocol for the extracellular CGTase of alkaliphilc bacterial strain Caldalkalibacillus mannanilyticus IB-OR17-B1 guaranteeing the enzyme homogeneity and its high yield. The improved combination of ultrafiltration and corn-starch (5% w/v) affinity sorption techniques resulted to mild and rapid isolation of electrophoritically homogenic enzyme at 18 × increase of its specific activity and yield 56%. The developed two-step procedure instead the practiced tree-step one using commonly ion-exchange chromatography as final purification technique highly contributes in advance of cost-effectiveness for industrial production and isolation of valuable CGTases.
Collapse
Affiliation(s)
- P Yu Milman
- Ufa Institute of Biology of Ufa Federal Research Center of Russian Academy of Sciences, Russia, Ufa
| | - E A Gilvanova
- Ufa Institute of Biology of Ufa Federal Research Center of Russian Academy of Sciences, Russia, Ufa
| | - G E Aktuganov
- Ufa Institute of Biology of Ufa Federal Research Center of Russian Academy of Sciences, Russia, Ufa
| |
Collapse
|
2
|
Miao B, Huang D, Wang T, Liu H, Hao Z, Yuan H, Jiang Y. Enhancing trehalose production via Bacillus species G1 cyclodextrin glucanotransferase mutants: modifying disproportionation characteristics and thermal stability. Front Microbiol 2024; 15:1500232. [PMID: 39629214 PMCID: PMC11611815 DOI: 10.3389/fmicb.2024.1500232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Inefficient conversion of small molecule maltooligosaccharides into trehalose greatly affects the cost of the production of trehalose by double enzyme method [maltooligosyl trehalose synthase (MTSase) and maltooligosyl trehalose trehalohyrolase (MTHase)]. This study used directed evolution to increase oligosaccharide utilization by the cyclomaltodextrin glucanotransferase (CGTase) from Bacillus species G1. This enzyme was chosen for its adaptability and stability in trehalose production. Model analysis revealed that the hydrogen bond distance between the N33K mutant and maltose reduced from 2.6 Å to 2.3 Å, increasing maltose affinity and boosting transglycosylation activity by 2.1-fold compared to the wild type. Further mutations improved thermal stability and optimum temperature, resulting in the N33K/S211G mutant. Consistent results from repeated experiments showed that the N33K/S211G mutant increased trehalose yield by 32.6% using maltodextrin. The results enhanced the double-enzyme method formed by MTSase and MTHase for trehalose production. Overall, we have identified optimal catalytic conditions, demonstrating significant potential for industrial-scale trehalose production with enhanced efficiency and cost-effectiveness.
Collapse
Affiliation(s)
- Bobo Miao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Zhifeng Hao
- Yantai Zhaoyi Biotechnology Co., Ltd, Yantai, China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
3
|
Rabadiya K, Pardhi D, Thaker K, Patoliya J, Rajput K, Joshi R. A review on recent upgradation and strategies to enhance cyclodextrin glucanotransferase properties for its applications. Int J Biol Macromol 2024; 259:129315. [PMID: 38211906 DOI: 10.1016/j.ijbiomac.2024.129315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Cyclodextrin glycosyltransferase (CGTase) is a significant extracellular enzyme with diverse functions. CGTase is widely used in production of cyclic α-(1,4)-linked oligosaccharides (cyclodextrins) from starch via transglycosylation reaction. Recent discoveries of novel CGTases from different microorganisms have expanded its applications but natural CGTase have lower yield, leading to heterologous expression for increased production to meet various needs. Moreover, significant advancements in directed evolution approach have been explored to alter the molecular structure of CGTase to enhance its performance. This review comprehensively summarizes the strategies employed in heterologous expression to boost CGTase production and secretion in various host. It also outlines molecular engineering approaches aimed to improving CGTase properties, including product and substrate specificity, catalytic efficiency, and thermal stability. Additionally, a considerable stability against changes in temperature and organic solvents can be obtained by immobilization.
Collapse
Affiliation(s)
- Khushbu Rabadiya
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Dimple Pardhi
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Khushali Thaker
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Jaimini Patoliya
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Kiransinh Rajput
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Rushikesh Joshi
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
4
|
Pardhi DS, Rabadiya KJ, Panchal RR, Raval VH, Joshi RG, Rajput KN. Cyclodextrin glucanotransferase: fundamentals and biotechnological implications. Appl Microbiol Biotechnol 2023; 107:5899-5907. [PMID: 37548666 DOI: 10.1007/s00253-023-12708-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Cyclodextrin glucanotransferase (CGTase) is an extracellular enzyme of the GH13 α-amylase family that catalyzes a unique intramolecular reaction known as cyclization to transform α-1, 4-glucans and similar starches into cyclodextrins. They also catalyze intermolecular transglycosylation reactions namely coupling, disproportionation, and some hydrolyzing effects on starch. The monomeric structures of the CGTase exhibit five domains (A, B, C, D, and E domains) with different molecular weights and amino acid sequences depending on the source. Among bacteria, Bacillus genus covers approximately 90% of the CGTase producers, while other genera like Klebsiella, Paenibacillus, and Thermoanaerobacter also shown decent contributions in recent studies. CGTase production is highly supported by alkaliphilic bacteria under submerged fermentation rather than solid-state fermentation. The bacterial sources, biochemical properties, production conditions, and structure of CGTases are compiled in this review. Cyclodextrins have the unique property of making inclusion complexes with various compounds, hence widely used in the food, pharmaceutical, cosmetics, laundry, and chemical sectors. This review presents a comprehensive view of CGTase produced by Bacillus spp., and other bacterial genera like Klebsiella, Paenibacillus, and Microbacterium. It also gives insight of the properties and recent biotechnological applications of cyclodextrins. KEY POINTS: • Transglycosylation reactions catalyzed by CGTase and their structural properties. • Comparative data of CGTase production by various genera and Bacillus spp. • Structures, properties, and applications of different cyclodextrins.
Collapse
Affiliation(s)
- Dimple S Pardhi
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Khushbu J Rabadiya
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rakeshkumar R Panchal
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Vikram H Raval
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rushikesh G Joshi
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Kiransinh N Rajput
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
5
|
Song W, Zhang M, Li X, Zhang Y, Zheng J. Heterologous expression of cyclodextrin glycosyltransferase from Bacillus stearothermophilus in Bacillus subtilis and its application in glycosyl rutin production. 3 Biotech 2023; 13:84. [PMID: 36798855 PMCID: PMC9925633 DOI: 10.1007/s13205-023-03510-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
In this paper, the cgt gene encoding cyclodextrin glycosyltransferase (CGTase) from Bacillus stearothermophilus was cloned into pWB980 plasmid for extracellular expression in Bacillus subtilis SCK6. Through adding a six-histidine affinity tag fused to the C-terminus, the recombinant CGTase could be purified by nickel ion affinity chromatography, and its molecular weight was approximately 76 kDa on SDS-PAGE. Then, the enzymatic properties were determined, and results were as follows: the optimum temperature and pH were identified as 40 ℃ and pH 5.0, respectively. CGTase had good tolerance to metal ions of Mn2+, Ca2+, and Mg2+. The enzyme activity was activated by Na+, Al3+, Fe3+, and Ni+, and it was remarkably inhibited by Cu2+ and Zn2+. To improve the aqueous solubility of rutin, CGTase was used to catalyze the transglycosylation reaction, and the conversion rate could reach as high as 80.13% under optimal conditions. Furthermore, the reaction mixture was treated with glucoamylase and microporous adsorbent resin. The yield of glycosyl-rutin was 56.1%, and its purity was 74.3%, which further improved the value of the product. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03510-5.
Collapse
Affiliation(s)
- Wen Song
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Mengjie Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Xiaojun Li
- Department of Fundamental Medicine, Xinyu University, Xinyu, 338004 China
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| |
Collapse
|