1
|
El-Seadawy HM, El-Shabasy RM, Zayed A. Rediscovering the chemistry of the Cunninghamella species: potential fungi for metabolites and enzymes of biological, industrial, and environmental values. RSC Adv 2024; 14:38311-38334. [PMID: 39640949 PMCID: PMC11619259 DOI: 10.1039/d4ra07187e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Endophytic fungi have a strong affinity for producing the same or comparable compounds to those produced by their hosts. Herein, genetic diversity and environmental adaptation of the Cunninghamella species were briefly investigated. The genetic flexibility in Cunninghamella represents an evolutionary mechanism that allows them to respond effectively to environmental changes. The current review paid much attention toward the phytochemical screening of Cunninghamella sp., revealing the presence of alkaloids, unsaturated sterols, fatty acids, polyphenols, and quinones. The intensive investigations clarified that Cunninghamella sp. are distinguished in producing several numbers of fatty acids, in particular polyunsaturated fatty acids (PUFA), in large quantities compared to other metabolites. The study demonstrated the effective role of Cunninghamella sp. in forming several bioactive metabolites owing to cytochrome P450 (CYP) that confirm significant value of such species for potential media biotransformation. The comparative investigations revealed that the isolation of flavonoids is yet to be reported, while the number of elucidated alkaloids and steroids is still limited. In contrast, successful results in the biotransformation of these metabolites were verified and showed a high affinity to convert simple substances to more valuable agents by Cunninghamella. The biomedical applications of naturally occurring compounds isolated from Cunninghamella were well documented; these included their antimicrobial, anti-cancer, anti-inflammatory, anti-Alzheimer, and antiaging properties. The antimicrobial activity was mostly attributed to the fatty acid contents in Cunninghamella sp. Moreover, tremendous attention was paid towards the agricultural and industrial usage of chitosan as it is one of the most crucial metabolites involved in wide applications. Chitosan is involved in food preservation for extending life storage period and utilized as biofertilizer, which enhances bacterial disease resistance. In addition, Cunninghamella is considered an important enzyme reservoir. Various Cunninghamella sp. produce several important enzymes, such as lignin peroxidase, catalase, cellulase, xylanase, laccase, and CYPs, that can be used for remediation, fertilization, preservation and medicinal purposes. Hence, further in-depth investigations are highly recommended to explore new insights into this potential reservoir of a wide spectrum of chemicals for industrial, medicinal, agricultural, and environmental applications.
Collapse
Affiliation(s)
- Hosam M El-Seadawy
- Department of Pharmacognosy, College of Pharmacy, Tanta University El-Guish Street (Medical Campus) 31527 Tanta Egypt
| | - Rehan M El-Shabasy
- Chemistry Department, Faculty of Science, Menofia University 32512 Shebin El-Kom Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University El-Guish Street (Medical Campus) 31527 Tanta Egypt
| |
Collapse
|
2
|
Enyi EO, Chigozie VU, Okezie UM, Udeagbala NT, Oko AO. A review of the pharmaceutical applications of endophytic fungal secondary metabolites. Nat Prod Res 2024:1-17. [PMID: 39514834 DOI: 10.1080/14786419.2024.2423036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
A major challenge to human health is the emergence of drug-resistant pathogenic strains of organisms. Studies have found ecologically friendly, cost-effective, and innocuous alternative sources of bioactive compounds capable of managing drug-resistant menace. This review x-rays the endophytic fungal community and the pharmaceutical applications of their secondary metabolites. Endophytic fungi house biologically active compounds, which makes them a good pharmaceutical alternative. Also, their intrinsic ability to produce such an avalanche of bioactive compounds could be attributed to their mutualistic interaction with the plant's host. Secondary metabolites harvested from endophytic fungi have been identified and categorised: steroids, xanthones, terpenoids, isocoumarins, phenols, tetralones, benzopyranones, and enniatrines. This review also highlights optimisation strategy, co-culture method, chemical epigenetic remodelling, and molecular method as approaches adopted to boost the production of bioactive compounds. The numerous applications of endophytic fungal secondary metabolites were equally presented, which include their bioactive properties, as well as their use in industries.
Collapse
Affiliation(s)
- E O Enyi
- Department of Biology and Biotechnology, David Umahi Federal University of Health Sciences, Ohaozara, Nigeria
- International Institute for Infectious Disease, Biosafety and Biosecurity Research, Ohaozara, Nigeria
| | - V U Chigozie
- Department of Pharmaceutical Microbiology and Biotechnology, David Umahi Federal University of Health Sciences, Ohaozara, Nigeria
- International Institute for Pharmaceutical Research and Innovations (IIPRI), Ohaozara, Nigeria
| | - U M Okezie
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - N T Udeagbala
- Department of Biology and Biotechnology, David Umahi Federal University of Health Sciences, Ohaozara, Nigeria
| | - A O Oko
- Department of Biology and Biotechnology, David Umahi Federal University of Health Sciences, Ohaozara, Nigeria
| |
Collapse
|
3
|
Sidhu D, Vasundhara M, Dey P. Chemical characterization, pathway enrichments and bioactive potentials of catechin-producing endophytic fungi isolated from tea leaves. RSC Adv 2024; 14:33034-33047. [PMID: 39434990 PMCID: PMC11492194 DOI: 10.1039/d4ra05758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Endophytes acquire flavonoid biosynthetic genes from the host medicinal plants. Despite tea (Camellia sinensis (L.) Kuntze) being the major source of bioactive catechins, catechin-producing endophytic fungi have never been reported from the tea plant. Here, we report the isolation and characterization of catechin-producing endophytic fungi isolated from tea leaves, their chemical characterization, and associated bioactivities. Among the nine isolated endophytes, two (CSPL6 and CSPL5b) produced catechin (381.48 and 166.40 μg per mg extract) and epigallocatechin-o-gallate (EGCG; 484.41 and 281.99 μg per mg extract) as quantified by high-performance liquid chromatography (HPLC). The isolates were identified as Pseudopestalotiopsis camelliae-sinensis and Didymella sinensis based on molecular and morphological characterization. Untargeted metabolomics using gas-chromatography mass spectroscopy (GCMS) revealed the presence of several bioactive phytochemicals mostly belonging to tyrosols, pyridoxines, fatty acids, aminopyrimidine, and benzenetriol classes. Metabolic pathways pertaining to the biosynthesis of unsaturated fatty acids (UFAs), butanoate metabolism, and linoleic acid metabolism were highly enriched in both catechin-producing isolates. The isolates were able to differentially scavenge intracellular O2 and N2 free-radicals, but CSPL5b demonstrated relatively superior bioactivities compared to CSPL6. Both isolates stimulated the growth of various probiotic strains, indicating prebiotic effects that are otherwise known to be associated with catechins. Collectively, the current study demonstrated that fungal endophytes CSPL6 and CSPL5b, isolated from tea leaves, could be used as alternative sources of catechins, and hold promising potential in evidence-based therapeutics.
Collapse
Affiliation(s)
- Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering & Technology Patiala Punjab 147004 India +91-9064275660 +91-8146480908
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering & Technology Patiala Punjab 147004 India +91-9064275660 +91-8146480908
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology Patiala Punjab 147004 India +91-9064275660 +91-8146480908
| |
Collapse
|
4
|
Mejía C, Bautista EJ, García L, Barrios Murcia JC, Barrera G. Assessment of Fungal Lytic Enzymatic Extracts Produced Under Submerged Fermentation as Enhancers of Entomopathogens' Biological Activity. Curr Microbiol 2024; 81:217. [PMID: 38852107 PMCID: PMC11162973 DOI: 10.1007/s00284-024-03702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/10/2024] [Indexed: 06/10/2024]
Abstract
The application of enzymes in agricultural fields has been little explored. One potential application of fungal lytic enzymes (chitinases, lipases, and proteases) is as an additive to current biopesticides to increase their efficacy and reduce the time of mortality. For this, a screening of lytic overproducer fungi under submerged fermentation with a chemical-defined medium was performed. Then, the enzymatic crude extract (ECE) was concentrated and partially characterized. This characterization consisted of measuring the enzymatic activity (lipase, protease and, chitinase) and determining the enzyme stability after storage at temperatures of - 80, - 20 and, 4 °C. And lastly, the application of these concentrated enzymatic crude extracts (C-ECE) as an enhancer of spores-based fungal biopesticide was proven. Beauveria were not as good producers of lytic enzymes as the strains from Trichoderma and Metarhizium. The isolate M. robertsii Mt015 was selected for the co-production of chitinases and proteases; and the isolate T. harzianum Th180 for co-production of chitinases, lipases, and proteases. The C-ECE of Mt015 had a protease activity of 18.6 ± 1.1 U ml-1, chitinase activity of 0.28 ± 0.01 U ml-1, and no lipase activity. Meanwhile, the C-ECE of Th180 reached a chitinase activity of 0.75 U ml-1, lipase activity of 0.32 U ml-1, and protease activity of 0.24 U ml-1. Finally, an enhancing effect of the enzymatic extracts of M. robertsii (66.7%) and T. harzianum (43.5%) on the efficacy of B. bassiana Bv064 against Diatraea saccharalis larvae was observed. This work demonstrates the non-species-specific enhancing effect of enzymatic extracts on the insecticidal activity of conidial-based biopesticides, which constitutes a contribution to the improvement of biological control agents' performance.
Collapse
Affiliation(s)
- Cindy Mejía
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Km 14 vía Mosquera - Bogotá, Cundinamarca, Colombia.
| | - Eddy J Bautista
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Sede Central, Km 14 Vía Mosquera - Bogotá, Cundinamarca, Colombia
| | - Lorena García
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Km 14 vía Mosquera - Bogotá, Cundinamarca, Colombia
| | - Juan Carlos Barrios Murcia
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Sede Central, Km 14 Vía Mosquera - Bogotá, Cundinamarca, Colombia
| | - Gloria Barrera
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Km 14 vía Mosquera - Bogotá, Cundinamarca, Colombia
| |
Collapse
|
5
|
Gupta A, Vasundhara M. Withanolides production by the endophytic fungus Penicillium oxalicum associated with Withania somnifera (L.) Dunal. World J Microbiol Biotechnol 2024; 40:215. [PMID: 38802663 DOI: 10.1007/s11274-024-04017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Withanolides are steroidal lactones with diverse bioactive potential and their production from plant sources varies with genotype, age, culture conditions, and geographical region. Endophytic fungi serve as an alternative source to produce withanolides, like their host plant, Withania somnifera (L.) Dunal. The present study aimed to isolate endophytic fungi capable of producing withanolides, characterization and investigation of biological activities of these molecules. The methanolic fungal crude extract of one of the fungal isolates WSE16 showed maximum withanolide production (219 mg/L). The fungal isolate WSE16 was identified as Penicillium oxalicum based on its morphological and internal transcribed spacer (ITS) sequence analysis and submitted in NCBI (accession number OR888725). The methanolic crude extract of P. oxalicum was further purified by column chromatography, and collected fractions were assessed for the presence of withanolides. Fractions F3 and F4 showed a higher content of withanolides (51.8 and 59.1 mg/L, respectively) than other fractions. Fractions F3 and F4 exhibited antibacterial activity against Staphylococcus aureus with an IC50 of 23.52 and 17.39 µg/ml, respectively. These fractions also showed antioxidant activity (DPPH assay with IC50 of 39.42 and 38.71 µg/ml, superoxide anion scavenging assay with IC50 of 41.10 and 38.84 µg/ml, and reducing power assay with IC50 of 42.61 and 41.40 µg/ml, respectively) and acetylcholinesterase inhibitory activity (IC50 of 30.34 and 22.05 µg/ml, respectively). The withanolides present in fraction 3 and fraction 4 were identified as (20S, 22R)-1a-Acetoxy-27-hydroxywitha-5, 24-dienolide-3b-(O-b-D-glucopyranoside) and withanamide A, respectively, using UV, FTIR, HRMS, and NMR analysis. These results suggest that P. oxalicum, an endophytic fungus isolated from W. somnifera, is a potential source for producing bioactive withanolides.
Collapse
Affiliation(s)
- Anu Gupta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
6
|
Vasundhara M, Singh K, Suryanarayanan TS, Reddy MS. Alkaliphilic and thermostable lipase production by leaf litter fungus Leptosphaerulina trifolii A SMR-2011. Arch Microbiol 2024; 206:264. [PMID: 38760519 DOI: 10.1007/s00203-024-03997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Fungi that inhabit fire-prone forests have to be adapted to harsh conditions and fungi affiliated to Ascomycota recovered from foliar litter samples were used for bioprospecting of molecules such as enzymes. Agni's fungi isolated from leaf litter, whose spores are capable of tolerating 110 oC were screened for thermostable lipases. One of the isolates, Leptosphaerulina trifolii A SMR-2011 exhibited high positive lipase activity than other isolates while screening through agar plate assay using Tween 20 in the medium. Maximum lipase activity (173.2 U/mg) of L. trifolii was observed at six days of inoculation and decreased thereafter. Among different oils used, the maximum lipase activity was attained by soybean oil (940.1 U/mg) followed by sunflower oil (917.1 U/mg), and then by mustard oil (884.8 U/mg), showing its specificity towards unsaturated fatty acids. Among the various organic nitrogen sources tested, soybean meal showed maximum lipase activity (985.4 U/mg). The partially purified enzyme was active over a wide range of pH from 8 to 12 with a pH optimum of 11.0 (728.1 U/mg) and a temperature range of 60-80 oC with an optimal temperature of 70 oC (779.1 U/mg). The results showed that lipase produced by L. trifolii is alkali stable and retained 85% of its activity at pH 11.0. This enzyme also showed high thermal stability retaining more than 50% of activity when incubated at 60 oC to 90 °C for 2 h. The ions Ca2+ and Mn2+ induced the lipase activity, while Cu2+ and Zn2+ ions lowered the activity compared to control. These results suggests that the leaf litter fungus L. trifolii serves as a potential source for the production of alkali-tolerant and thermostable lipase.
Collapse
Affiliation(s)
- Mondem Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Kirti Singh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Trichur S Suryanarayanan
- Vivekananda Institute of Tropical Mycology (VINSTROM), Ramakrishna Mission Vidyapith, Chennai, Tamil Nadu, 600004, India
| | - Mondem Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
7
|
Ebadi M, Ahmadi F, Tahmouresi H, Pazhang M, Mollaei S. Investigation the biological activities and the metabolite profiles of endophytic fungi isolated from Gundelia tournefortii L. Sci Rep 2024; 14:6810. [PMID: 38528041 DOI: 10.1038/s41598-024-57222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
Endophytic fungi are microorganisms that are considered as a potential source of natural compounds, and can be applied in various industries. The aims of this research were molecular identification of endophytic fungi isolated from the Gundelia tournefortii stems, and investigation their biological activities as well as phenolic and fatty acid profile. Surface sterilized stems of G. tournefortii were placed on potato dextrose agar (PDA) to isolate the fungal endophytes. Genomic DNA was extracted by CTAB method, and PCR amplification was performed by ITS 1 and ITS 4 as primers. The enzyme production of endophytic fungi was determined based on the formation of a clear zone that appeared around the colonies of fungus. The anti-oxidant activity was evaluated by measuring the amount of free radicals DPPH. Also, the total phenol and flavonoid contents were measured obtained by Folin-Ciocalteu and aluminum chloride colorimetric methods, respectively. Moreover, the separation and identification of phenolic acids and fatty acids were done by HPLC and GC, respectively. Phylogenetic analysis was done based on the Internal Transcribed Spacer (ITS) region, and five isolates were identified as following: Aspergillus niger, Penicillium glabrum, Alternaria alternata, A. tenuissima, and Mucor circinelloides. Evaluation of the enzymatic properties showed that P. gabrum (31 ± 1.9 mm), and A. niger (23 ± 1.7) had more ability for producing pectinase and cellulase. The anti-oxidant activity of isolates showed that A. alternata extract (IC50 = 471 ± 29 µg/mL) had the highest anti-oxidant properties, followed by A. tenuissima extract (IC50 = 512 ± 19 µg/mL). Also, the extract of A. alternata had the greatest amount of total phenols and flavonoids contents (8.2 ± 0.4 mg GAL/g and 2.3 ± 0.3 mg QE/g, respectively). The quantification analysis of phenolic acid showed that rosmarinic acid, para-coumaric acid, and meta-coumaric acid (42.02 ± 1.31, 7.53 ± 0.19, 5.41 ± 0.21 mg/g, respectively) were the main phenolic acids in the studied fungi. The analysis of fatty acids confirmed that, in all fungi, the main fatty acids were stearic acid (27.9-35.2%), oleic acid (11.3-17.3%), palmitic acid (16.9-23.2%), linoleic acid (5.8-11.6%), and caprylic acid (6.3-10.9%). Our finding showed that endophytic fungi are a source of bioactive compounds, which could be used in various industries. This is the first report of endophytic fungi associated with G. tournefortii, which provides knowledge on their future use on biotechnological processes.
Collapse
Affiliation(s)
- Mostafa Ebadi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Fatemeh Ahmadi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Hossein Tahmouresi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Pazhang
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Saeed Mollaei
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
8
|
Flores AC, Kimiko Kadowaki M, da Conceição Silva JL, de Andrade Bianchini I, de Almeida Felipe MDG, Sene L. Enzymatic potential of endophytic fungi: xylanase production by Colletotrichum boninense from sugarcane biomass. Braz J Microbiol 2023; 54:2705-2718. [PMID: 37735300 PMCID: PMC10689674 DOI: 10.1007/s42770-023-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Endophytic fungi constitute a major part of the still unexplored fungal diversity and have gained interest as new biological sources of natural active compounds, including enzymes. Endophytic fungi were isolated from soybean leaves and initially screened on agar plates for the production of CMCase (carboxymethylcellulase), xylanase, amylase and protease. The highest Enzymatic Indexes (IE) were verified for xylanase (2.14 and 1.31) with the fungi M6-A6P5F2 and M12-A5P3F1.2 and CMCase (1.92 and 1.62) with the fungi M13-A9P2F1 and M12-A5P3F1.2, respectively. The production of xylanase and CMCase by the selected fungi was evaluated in submerged cultivation using beechwood xylan and carboxymethylcellulose (CMC), as well as sugarcane straw and bagasse in different ratios as carbon sources. Both types of lignocellulosic biomass proved to be good inducers of enzymatic activity. The best xylanase producer among the isolates was identified as Colletotrichum boninense. With this fungus, the highest xylanase activity was obtained with a sugarcane straw-bagasse mixture in a 50:50 ratio (383.63 U mL-1), a result superior to that obtained with the use of beechwood xylan (296.65 U mL-1). Regardingthe kinetic behavior of the crude xylanase, there was found optimal pH of 5.0 and optimal temperatures of 50°C and 60°C. At 40°C and 50°C, xylanase retained 87% and 76% of its initial catalytic activity, respectively. These results bring new perspectives on bioprospecting endophytic fungi for the production of enzymes, mainly xylanase, as well as the exploitation of agro-industrial by-products, such as sugarcane straw and bagasse.
Collapse
Affiliation(s)
- Andressa Caroline Flores
- Center of Exact and Technological Sciences, State University of West Paraná, Cascavel, Paraná, Brazil.
| | - Marina Kimiko Kadowaki
- Center of Medical and Pharmaceutical Sciences, State University of West Paraná, Cascavel, Paraná, Brazil
| | | | | | | | - Luciane Sene
- Center of Exact and Technological Sciences, State University of West Paraná, Cascavel, Paraná, Brazil
| |
Collapse
|
9
|
Tan JB, Peng WW, Li MF, Kang FH, Zheng YT, Xu L, Qin SY, Huang YT, Zou ZX. Three new metabolites from the endophyte Fusarium proliferatum T2-10. Nat Prod Res 2023:1-11. [PMID: 37933750 DOI: 10.1080/14786419.2023.2278158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
One new cyclopeptide, cyclo-(L-Trp-L-Phe-L-Phe) (1), one new 2-pyridone derivative, fusarone A (3), and one new natural indole derivative, ethyl 3-indoleacetate (4), along with six known compounds were isolated from the endophytic fungus Fusarium proliferatum T2-10. The planar structures of three new compounds were identified by spectral methods including 1D and 2D NMR techniques, and the absolute configuration of compound 1 was elucidated by Marfey-MS method. In addition, all compounds were evaluated for their cytotoxic and antibacterial activities in vitro. Compound 2 showed remarkable cytotoxic activities against two human hepatoma cell lines SMMC7721 and HepG2 with IC50 values of 5.89 ± 0.74 and 6.16 ± 0.52 μM, and showed moderate antibacterial activities against Staphylococcus aureus and Enterococcus faecalis with MIC values of 7.81 and 15.62 μg/mL, respectively.
Collapse
Affiliation(s)
- Jian-Bing Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P. R. China
| | - Wei-Wei Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P. R. China
| | - Mei-Fang Li
- Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou, P. R. China
| | - Feng-Hua Kang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P. R. China
| | - Yu-Ting Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P. R. China
| | - Li Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P. R. China
| | - Si-Yu Qin
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P. R. China
| | - Yuan-Tao Huang
- Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou, P. R. China
| | - Zhen-Xing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, P. R. China
| |
Collapse
|
10
|
Anand U, Pal T, Yadav N, Singh VK, Tripathi V, Choudhary KK, Shukla AK, Sunita K, Kumar A, Bontempi E, Ma Y, Kolton M, Singh AK. Current Scenario and Future Prospects of Endophytic Microbes: Promising Candidates for Abiotic and Biotic Stress Management for Agricultural and Environmental Sustainability. MICROBIAL ECOLOGY 2023; 86:1455-1486. [PMID: 36917283 PMCID: PMC10497456 DOI: 10.1007/s00248-023-02190-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Globally, substantial research into endophytic microbes is being conducted to increase agricultural and environmental sustainability. Endophytic microbes such as bacteria, actinomycetes, and fungi inhabit ubiquitously within the tissues of all plant species without causing any harm or disease. Endophytes form symbiotic relationships with diverse plant species and can regulate numerous host functions, including resistance to abiotic and biotic stresses, growth and development, and stimulating immune systems. Moreover, plant endophytes play a dominant role in nutrient cycling, biodegradation, and bioremediation, and are widely used in many industries. Endophytes have a stronger predisposition for enhancing mineral and metal solubility by cells through the secretion of organic acids with low molecular weight and metal-specific ligands (such as siderophores) that alter soil pH and boost binding activity. Finally, endophytes synthesize various bioactive compounds with high competence that are promising candidates for new drugs, antibiotics, and medicines. Bioprospecting of endophytic novel secondary metabolites has given momentum to sustainable agriculture for combating environmental stresses. Biotechnological interventions with the aid of endophytes played a pivotal role in crop improvement to mitigate biotic and abiotic stress conditions like drought, salinity, xenobiotic compounds, and heavy metals. Identification of putative genes from endophytes conferring resistance and tolerance to crop diseases, apart from those involved in the accumulation and degradation of contaminants, could open new avenues in agricultural research and development. Furthermore, a detailed molecular and biochemical understanding of endophyte entry and colonization strategy in the host would better help in manipulating crop productivity under changing climatic conditions. Therefore, the present review highlights current research trends based on the SCOPUS database, potential biotechnological interventions of endophytic microorganisms in combating environmental stresses influencing crop productivity, future opportunities of endophytes in improving plant stress tolerance, and their contribution to sustainable remediation of hazardous environmental contaminants.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel.
| | - Tarun Pal
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Niraj Yadav
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya, 224123, Uttar Pradesh, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| | - Krishna Kumar Choudhary
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya, 224123, Uttar Pradesh, India
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Ajay Kumar
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, 7505101, Rishon, Lezion, Israel
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 38, 25123, Brescia, Italy.
| | - Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Max Kolton
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8499000, Midreshet Ben-Gurion, Israel
| | - Amit Kishore Singh
- Department of Botany, Bhagalpur National College (A constituent unit of Tilka Manjhi Bhagalpur University), Bhagalpur, 812007, Bihar, India.
| |
Collapse
|
11
|
Parashiva J, Nuthan BR, Rakshith D, Satish S. Endophytic Fungi as a Promising Source of Anticancer L-Asparaginase: A Review. Curr Microbiol 2023; 80:282. [PMID: 37450223 DOI: 10.1007/s00284-023-03392-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
L-asparaginase is a tetrameric enzyme from the amidohydrolases family, that catalyzes the breakdown of L-asparagine into L-aspartic acid and ammonia. Since its discovery as an anticancer drug, it is used as one of the prime chemotherapeutic agents to treat acute lymphoblastic leukemia. Apart from its use in the biopharmaceutical industry, it is also used to reduce the formation of a carcinogenic substance called acrylamide in fried, baked, and roasted foods. L-asparaginase is derived from many organisms including plants, bacteria, fungi, and actinomycetes. Currently, L-asparaginase preparations from Escherichia coli and Erwinia chrysanthemi are used in the clinical treatment of acute lymphoblastic leukemia. However, they are associated with low yield and immunogenicity problems. At this juncture, endophytic fungi from medicinal plants have gained much attention as they have several advantages over the available bacterial preparations. Many medicinal plants have been screened for L-asparaginase producing endophytic fungi and several studies have reported potent L-asparaginase producing strains. This review provides insights into fungal endophytes from medicinal plants and their significance as probable alternatives for bacterial L-asparaginase.
Collapse
Affiliation(s)
- Javaraiah Parashiva
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 006, India
| | | | - Devaraju Rakshith
- Department of Microbiology, Yuvaraja's College, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 005, India
| | - Sreedharamurthy Satish
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570 006, India.
| |
Collapse
|
12
|
Demkiv O, Gayda G, Stasyuk N, Brahinetz O, Gonchar M, Nisnevitch M. Nanomaterials as Redox Mediators in Laccase-Based Amperometric Biosensors for Catechol Assay. BIOSENSORS 2022; 12:bios12090741. [PMID: 36140126 PMCID: PMC9496325 DOI: 10.3390/bios12090741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022]
Abstract
Laccase is a copper-containing enzyme that does not require hydrogen peroxide as a co-substrate or additional cofactors for an enzymatic reaction. Nanomaterials of various chemical structures are usually applied to the construction of enzyme-based biosensors. Metals, metal oxides, semiconductors, and composite NPs perform various functions in electrochemical transformation schemes as a platform for the enzyme immobilization, a mediator of an electron transfer, and a signal amplifier. We describe here the development of amperometric biosensors (ABSs) based on laccase and redox-active micro/nanoparticles (hereafter—NPs), which were immobilized on a graphite electrode (GE). For this purpose, we isolated a highly purified enzyme from the fungus Trametes zonatus, and then synthesized bi- and trimetallic NPs of noble and transition metals, as well as hexacyanoferrates (HCF) of noble metals; these were layered onto the surfaces of GEs. The electroactivity of many of the NPs immobilized on the GEs was characterized by cyclic voltammetry (CV) experiments. The most effective mediators of electron transfer were selected as the platform for the development of laccase-based ABSs. As a result, a number of catechol-sensitive ABSs were constructed and characterized. The laccase/CuCo/GE was demonstrated to possess the highest sensitivity to catechol (4523 A·M−1·m−2) among the tested ABSs. The proposed ABSs may be promising for the analysis of phenolic derivatives in real samples of drinking water, wastewater, and food products.
Collapse
Affiliation(s)
- Olha Demkiv
- Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16, Dragomanova Str., 79005 Lviv, Ukraine
| | - Galina Gayda
- Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16, Dragomanova Str., 79005 Lviv, Ukraine
- Correspondence: (G.G.); (M.N.); Tel.: +38-(032)-2612144 (G.G.); +972-39143042 (M.N.)
| | - Nataliya Stasyuk
- Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16, Dragomanova Str., 79005 Lviv, Ukraine
| | - Olena Brahinetz
- State Institution Institute of Blood Pathology and Transfusion Medicine National Academy of Medical Sciences of Ukraine, 45, General Chuprinka Str., 79044 Lviv, Ukraine
| | - Mykhailo Gonchar
- Institute of Cell Biology National Academy of Sciences of Ukraine, 14/16, Dragomanova Str., 79005 Lviv, Ukraine
| | - Marina Nisnevitch
- Department of Chemical Engineering, Ariel University, Kyriat-ha-Mada, Ariel 4070000, Israel
- Correspondence: (G.G.); (M.N.); Tel.: +38-(032)-2612144 (G.G.); +972-39143042 (M.N.)
| |
Collapse
|
13
|
Yadav R, Vasundhara M, Rajamani T, Suryanarayanan TS, Reddy SM. Isolation and characterization of thermostable and alkali-tolerant cellulase from litter endophytic fungus Bartalinia pondoensis. Folia Microbiol (Praha) 2022; 67:955-964. [PMID: 35906455 DOI: 10.1007/s12223-022-00991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
Abstract
Endophytic fungi in plant tissues produce a wide range of secondary metabolites and enzymes, which exhibit a variety of biological activities. In the present study, litter endophytic fungi were isolated from a fire-prone forest and screened for thermostable cellulases. Among nine endophytic fungi tested, two isolates, Bartalinia pondoensis and Phoma sp., showed the maximum cellulase activity. Bartalinia pondoensis was further selected for its cellulase production and characterization. Among the carbon and nitrogen sources tested, maximum cellulase production was observed with maltose and yeast extract, and the eucalyptus leaves and rice bran served as the best natural substrates. The cellulase activity increased with increasing temperature, with maximum activity recorded at 100 °C. The maximum CMCase activity was observed between pH 6.0 and 7.0 and retained 80% of its activity in the pH range of 8-10. Partially purified cellulase of B. pondoensis retained 50% of its activity after 2 h of incubation at 60 °C, 80 °C and 100 °C. These results suggest that litter endophytic fungus B. pondoensis is a potential source for the production of thermostable and alkali-tolerant cellulase.
Collapse
Affiliation(s)
- Rajnish Yadav
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Mondem Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Thavamani Rajamani
- Vivekananda Institute of Tropical Mycology (VINSTROM), Ramakrishna Mission Vidyapith, Chennai, 600004, Tamil Nadu, India
| | - Trichur S Suryanarayanan
- Vivekananda Institute of Tropical Mycology (VINSTROM), Ramakrishna Mission Vidyapith, Chennai, 600004, Tamil Nadu, India
| | - Sudhakara M Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
14
|
Mattoo AJ, Nonzom S. Endophytes in Lignin Valorization: A Novel Approach. Front Bioeng Biotechnol 2022; 10:895414. [PMID: 35928943 PMCID: PMC9343868 DOI: 10.3389/fbioe.2022.895414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lignin, one of the essential components of lignocellulosic biomass, comprises an abundant renewable aromatic resource on the planet earth. Although 15%––40% of lignocellulose pertains to lignin, its annual valorization rate is less than 2% which raises the concern to harness and/or develop effective technologies for its valorization. The basic hindrance lies in the structural heterogeneity, complexity, and stability of lignin that collectively makes it difficult to depolymerize and yield common products. Recently, microbial delignification, an eco-friendly and cheaper technique, has attracted the attention due to the diverse metabolisms of microbes that can channelize multiple lignin-based products into specific target compounds. Also, endophytes, a fascinating group of microbes residing asymptomatically within the plant tissues, exhibit marvellous lignin deconstruction potential. Apart from novel sources for potent and stable ligninases, endophytes share immense ability of depolymerizing lignin into desired valuable products. Despite their efficacy, ligninolytic studies on endophytes are meagre with incomplete understanding of the pathways involved at the molecular level. In the recent years, improvement of thermochemical methods has received much attention, however, we lagged in exploring the novel microbial groups for their delignification efficiency and optimization of this ability. This review summarizes the currently available knowledge about endophytic delignification potential with special emphasis on underlying mechanism of biological funnelling for the production of valuable products. It also highlights the recent advancements in developing the most intriguing methods to depolymerize lignin. Comparative account of thermochemical and biological techniques is accentuated with special emphasis on biological/microbial degradation. Exploring potent biological agents for delignification and focussing on the basic challenges in enhancing lignin valorization and overcoming them could make this renewable resource a promising tool to accomplish Sustainable Development Goals (SDG’s) which are supposed to be achieved by 2030.
Collapse
Affiliation(s)
| | - Skarma Nonzom
- *Correspondence: Skarma Nonzom, , orcid.org/0000-0001-9372-7900
| |
Collapse
|
15
|
Yu C, Nian Y, Chen H, Liang S, Sun M, Pei Y, Wang H. Pyranone Derivatives With Antitumor Activities, From the Endophytic Fungus Phoma sp. YN02-P-3. Front Chem 2022; 10:950726. [PMID: 35873041 PMCID: PMC9300907 DOI: 10.3389/fchem.2022.950726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022] Open
Abstract
Two new pyranone derivatives phomapyrone A (2) and phomapyrone B (3), one new coumarin 11S, 13R-(+)-phomacumarin A (1), three known pyranones (4–6), together with three known amide alkaloids fuscoatramides A-C (7–9), as well as 9S, 11R-(+)-ascosalitoxin (10) were isolated from the endophytic fungus Phoma sp. YN02-P-3, which was isolated from the healthy leaf tissue of a Paulownia tree in Yunnan Province, China. Their structures were elucidated using extensive NMR spectroscopic and HRESIMS data and by comparing the information with literature data. In addition, all compounds were tested for their cytotoxicity activity against human tumor cell lines, and the results showed that new compounds 1-3 showed moderate inhibitory activity against the HL-60 cell line with IC50 values of 31.02, 34.62, and 27.90 μM, respectively.
Collapse
Affiliation(s)
- Chong Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yin Nian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Huanhua Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Shuwen Liang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Mengyang Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuehu Pei
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, HarBin, China
| | - Haifeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Haifeng Wang,
| |
Collapse
|