1
|
Zhao J, Shen F, Hu YM, Yin K, Chen Y, Chen YJ, Hu QC, Liang L. Prognostic value and microenvironmental crosstalk of exosome-related signatures in human epidermal growth factor receptor 2 positive breast cancer. Open Life Sci 2024; 19:20220899. [PMID: 39071494 PMCID: PMC11282918 DOI: 10.1515/biol-2022-0899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024] Open
Abstract
This study aimed to determine the prognostic value and microenvironmental crosstalk of exosome-related signatures in human epidermal growth factor receptor 2 positive breast cancer (HER2+ BC). Transcriptome sequencing and clinicopathological data were downloaded from the Cancer Genome Atlas. The 10X single cell sequencing dataset was downloaded from the National Center for Biotechnology Information Gene Expression Omnibus. Exosomes-Related Genes were extracted from the ExoCarta and Gene Set Enrichment Analysis databases. FGF9, SF3B4, and EPCAM were found and deemed the most accurate predictive signatures. Patients with HER2+ BC were subtyped into three groupings by exosome prognostic gene (EPGs). The expression of SF3B4 was positively linked with the infiltration of macrophages, neutrophils, and CD4+ T cells. The expression characteristics of EPGs were associated with the biological process of "response to xenobiotic stimuli." Interactions were relatively high between malignant epithelial cells and fibroblasts, endothelial cells, monocytes, and macrophages. Malignant epithelial cells interact more with fibroblasts and endothelial cells. The migration inhibitory factor pathway was the primary outgoing signaling pattern, while the C-C motif chemokine ligand pathway was the primary incoming signaling pattern for communication between malignant epithelial cells and macrophages. This study described the role of exosome signatures in the prognosis and microenvironment of HER2+ BC and provided a basis for future research.
Collapse
Affiliation(s)
- Ji Zhao
- Department of Breast Surgery, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People’s Republic of China
| | - Feng Shen
- Department of Medical Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, People’s Republic of China
| | - Yue-Mei Hu
- Department of Pathology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People’s Republic of China
| | - Kai Yin
- Department of Breast Surgery, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People’s Republic of China
| | - Ying Chen
- Department of Radiation Oncology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, Shanghai, 200336, People’s Republic of China
| | - Yan-Jie Chen
- Department of Gastroenterology, Zhongshan Hospital (Xiamen), Fudan University, No. 668, Jinhu Road, Huli District, Xiamen, 361015, People’s Republic of China
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Xuhui District, Shanghai200032, People’s Republic of China
| | - Qun-Chao Hu
- Department of Radiation Oncology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, Shanghai, 200336, People’s Republic of China
| | - Li Liang
- Department of Medical Oncology, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
2
|
Zhang M, Bi X. Heat Shock Proteins and Breast Cancer. Int J Mol Sci 2024; 25:876. [PMID: 38255948 PMCID: PMC10815085 DOI: 10.3390/ijms25020876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Heat shock proteins (Hsps) are a group of stress-induced proteins involved in protein folding and maturation. Based on their molecular weight, Hsps can be divided into six families: small Hsps, Hsp40, Hsp60, Hsp70, Hsp90, and large Hsps. In the process of breast cancer tumorigenesis, Hsps play a central role in regulating cell reactions and functions including proliferation, metastasis, and apoptosis. Moreover, some of the critical Hsps also regulate the fine balance between the protective and destructive immunological responses within the tumor microenvironment. In this review, we systematically summarize the roles of major Hsps in breast cancer biology and point out the potential uses of these proteins in breast cancer diagnosis and therapy. Understanding the roles of different families of Hsps in breast cancer pathogenesis will help in the development of more effective prevention and treatment measures for breast cancer.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Xiaowen Bi
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| |
Collapse
|
3
|
Durán-Jara E, Del Campo M, Gutiérrez V, Wichmann I, Trigo C, Ezquer M, Lobos-González L. Lactadherin immunoblockade in small extracellular vesicles inhibits sEV-mediated increase of pro-metastatic capacities. Biol Res 2024; 57:1. [PMID: 38173019 PMCID: PMC10763369 DOI: 10.1186/s40659-023-00477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Tumor-derived small extracellular vesicles (sEVs) can promote tumorigenic and metastatic capacities in less aggressive recipient cells mainly through the biomolecules in their cargo. However, despite recent advances, the specific molecules orchestrating these changes are not completely defined. Lactadherin is a secreted glycoprotein typically found in the milk fat globule membrane. Its overexpression has been associated with increased tumorigenesis and metastasis in breast cancer (BC) and other tumors. However, neither its presence in sEVs secreted by BC cells, nor its role in sEV-mediated intercellular communication have been described. The present study focused on the role of lactadherin-containing sEVs from metastatic MDA-MB-231 triple-negative BC (TNBC) cells (sEV-MDA231) in the promotion of pro-metastatic capacities in non-tumorigenic and non-metastatic recipient cells in vitro, as well as their pro-metastatic role in a murine model of peritoneal carcinomatosis. RESULTS We show that lactadherin is present in sEVs secreted by BC cells and it is higher in sEV-MDA231 compared with the other BC cell-secreted sEVs measured through ELISA. Incubation of non-metastatic recipient cells with sEV-MDA231 increases their migration and, to some extent, their tumoroid formation capacity but not their anchorage-independent growth. Remarkably, lactadherin blockade in sEV-MDA231 results in a significant decrease of those sEV-mediated changes in vitro. Similarly, intraperitoneally treatment of mice with MDA-MB-231 BC cells and sEV-MDA231 greatly increase the formation of malignant ascites and tumor micronodules, effects that were significantly inhibited when lactadherin was previously blocked in those sEV-MDA231. CONCLUSIONS As to our knowledge, our study provides the first evidence on the role of lactadherin in metastatic BC cell-secreted sEVs as promoter of: (i) metastatic capacities in less aggressive recipient cells, and ii) the formation of malignant ascites and metastatic tumor nodules. These results increase our understanding on the role of lactadherin in sEVs as promoter of metastatic capacities which can be used as a therapeutic option for BC and other malignancies.
Collapse
Affiliation(s)
- Eduardo Durán-Jara
- Center for Regenerative Medicine, Institute for Sciences and Innovation in Medicine, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Matías Del Campo
- Center for Regenerative Medicine, Institute for Sciences and Innovation in Medicine, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Valentina Gutiérrez
- Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Ignacio Wichmann
- Division of Obstetrics and Gynecology, Department of Obstetrics, Escuela de Medicina, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile
| | - César Trigo
- Center for Regenerative Medicine, Institute for Sciences and Innovation in Medicine, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Marcelo Ezquer
- Center for Regenerative Medicine, Institute for Sciences and Innovation in Medicine, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Lorena Lobos-González
- Center for Regenerative Medicine, Institute for Sciences and Innovation in Medicine, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
- Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile.
| |
Collapse
|
4
|
Nie Q, Cao H, Yang J, Liu T, Wang B. Long non-coding RNA NMRAL2P promotes glycolysis and reduces ROS in head and neck tumors by interacting with the ENO1 protein and promoting GPX2 transcription. PeerJ 2023; 11:e16140. [PMID: 37810778 PMCID: PMC10552744 DOI: 10.7717/peerj.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Background Metabolic reprogramming is a key marker in the occurrence and development of tumors. This process generates more reactive oxygen species (ROS), promoting the development of oxidative stress. To prevent ROS from harming tumor cells, tumor cells can increase the production of reducing agents to counteract excessive ROS. NMRAL2P has been shown to promote the production of reductive mRNA and plays an important role in the process of oxidative stress. Methods In this study, the clinical data and RNA sequencing of head and neck tumors were obtained from The Cancer Genome Atlas data set. The long non-coding RNA (LncRNA) related to oxidative stress were then identified using differential and correlation analyses. The differential expression and prognosis of the identified lncRNA were then verified using samples from the library of the Second Hospital of Hebei Medical University. Only NMRAL2P was substantially expressed in cancer tissues and predicted a poor prognosis. The tumor-promoting impact of NMRAL2P was then confirmed using in vitro functional assays. The data set was then split into high- and low-expression subgroups based on the median gene expression of NMRAL2P to obtain the mRNA that had a large difference between the two groups, and examine the mechanism of NMRAL2P on GPX2 using quantitative real-time PCR, RNA binding protein immunoprecipitation assay, and chromatin immunoprecipitation. Mass spectrometry was used to identify NMRAL2P-binding proteins and western blotting was used to investigate probable mechanisms. Results The lncRNA NMRAL2P is associated with oxidative stress in head and neck tumors. In vitro functional assays showed that the gene has a cancer-promoting effect, increasing lactic acid and superoxide dismutase production, and reducing the production of ROS and malondialdehyde. NMRAL2P promotes the transcription of GPX2 by binding to transcription factor Nrf2. The gene also inhibits the degradation of ENO1, a crucial enzyme in glycolysis, by binding to protein ENO1. Conclusions This study shows that NMRAL2P can promote glycolysis and reduce the harm to tumor cells caused by ROS. The gene can also be used as a possible target for the treatment of head and neck tumors.
Collapse
Affiliation(s)
- Qian Nie
- Department of Otorhinolaryngology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huan Cao
- Department of Otorhinolaryngology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - JianWang Yang
- Department of Otorhinolaryngology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tao Liu
- Department of Otorhinolaryngology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - BaoShan Wang
- Department of Otorhinolaryngology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|