1
|
Hassan AHA, Maridueña-Zavala MG, Alsherif EA, Aloufi AS, Korany SM, Aldilami M, Bouqellah NA, Reyad AM, AbdElgawad H. Inoculation with Jeotgalicoccus sp. improves nutritional quality and biological value of Eruca sativa by enhancing amino acid and phenolic metabolism and increasing mineral uptake, unsaturated fatty acids, vitamins, and antioxidants. FRONTIERS IN PLANT SCIENCE 2024; 15:1412426. [PMID: 39354941 PMCID: PMC11442294 DOI: 10.3389/fpls.2024.1412426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/09/2024] [Indexed: 10/03/2024]
Abstract
Plant growth-promoting bacteria (PGPB) are considered a promising tool for triggering the synthesis of bioactive compounds in plants and to produce healthy foods. This study aimed to demonstrate the impact of PGPB on the growth, accumulation of primary and secondary metabolites, biological activities, and nutritional qualities of Eruca sativa (arugula), a key leafy vegetable worldwide. To this end, Jeotgalicoccus sp. (JW0823), was isolated and identified by using partial 16S rDNA-based identification and phylogenetic analysis. The findings revealed that JW0823 significantly boosted plant biomass production by about 45% (P<0.05) and enhanced pigment contents by 47.5% to 83.8%. JW0823-treated plants showed remarkable improvements in their proximate composition and vitamin contents, with vitamin E levels increasing by 161.5%. JW0823 induced the accumulation of bioactive metabolites including antioxidants, vitamins, unsaturated fatty acids, and essential amino acids, thereby improving the nutritional qualities of treated plants. An increase in the amounts of amino acids was recorded, with isoleucine showing the highest increase of 270.2%. This was accompanied by increased activity of the key enzymes involved in amino acid biosynthesis, including glutamine synthase, dihydrodipicolinate synthase, cystathionine γ-synthase, and phenylalanine ammonia-lyase enzymes. Consequently, the total antioxidant and antidiabetic activities of the inoculated plants were enhanced. Additionally, JW0823 improved antimicrobial activity against several pathogenic microorganisms. Overall, the JW0823 treatment is a highly promising method for enhancing the health-promoting properties and biological characteristics of E. sativa, making it a valuable tool for improving the quality of this important leafy vegetable.
Collapse
Affiliation(s)
| | - Maria Gabriela Maridueña-Zavala
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Emad A Alsherif
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shereen Magdy Korany
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohammad Aldilami
- Department of Biology, Faculty of Science, King Abdelaziz University, Jeddah, Saudi Arabia
| | - Nahla A Bouqellah
- Department of Biology, Science College, Taibah University, Madinah, Saudi Arabia
| | - Ahmed M Reyad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Wu L, Xie Y, Li J, Han M, Yang X, Chang F. The Effect of Two Siderophore-Producing Bacillus Strains on the Growth Promotion of Perennial Ryegrass under Cadmium Stress. Microorganisms 2024; 12:1083. [PMID: 38930464 PMCID: PMC11206020 DOI: 10.3390/microorganisms12061083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Cadmium (Cd) is a highly toxic and cumulative environmental pollutant. Siderophores are heavy metal chelators with high affinity to heavy metals, such as Cd. Ryegrass (Lolium perenne L.) has a potential remediation capacity for soils contaminated by heavy metals. Consequently, using ryegrass alongside beneficial soil microorganisms that produce siderophores may be an effective means to remediate soils contaminated with Cd. In this study, the Bacillus strains WL1210 and CD303, which were previously isolated from the rhizospheres of Nitraria tangutorum in Wulan and Peganum harmala L. in Dachaidan, Qinghai, China, respectively, both arid and sandy environments, were evaluated for heavy metal pollution mitigation. Our quantitative analyses have discerned that the two bacterial strains possess commendable attributes of phosphorus (P) solubilization and potassium (K) dissolution, coupled with the capacity to produce phytohormones. To assess the heavy metal stress resilience of these strains, they were subjected to a cadmium concentration gradient, revealing their incremental growth despite cadmium presence, indicative of a pronounced tolerance threshold. The subsequent phylogenetic analysis, bolstered by robust genomic data from conserved housekeeping genes, including 16S rDNA, gyr B gene sequencing, as well as dnaK and recA, delineated a species-level phylogenetic tree, thereby confirming the strains as Bacillus atrophaeus. Additionally, we identified the types of iron-carrier-producing strains as catechol (WL1210) and carboxylic acid ferrophilin (CD303). A genomic analysis uncovered functional genes in strain CD303 associated with plant growth and iron carrier biosynthesis, such as fnr and iscA. Ryegrass seed germination assays, alongside morphological and physiological evaluations under diverse heavy metal stress, underscored the strains' potential to enhance ryegrass growth under high cadmium stress when treated with bacterial suspensions. This insight probes the strains' utility in leveraging alpine microbial resources and promoting ryegrass proliferation.
Collapse
Affiliation(s)
- Lingling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (L.W.); (J.L.); (M.H.); (X.Y.); (F.C.)
| | - Yongli Xie
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (L.W.); (J.L.); (M.H.); (X.Y.); (F.C.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Key Laboratory of Use of Forage Germplasm Resources on Tibetan Plateau of Qinghai Province, Qinghai University, Xining 810016, China
| | - Junxi Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (L.W.); (J.L.); (M.H.); (X.Y.); (F.C.)
| | - Mingrong Han
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (L.W.); (J.L.); (M.H.); (X.Y.); (F.C.)
| | - Xue Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (L.W.); (J.L.); (M.H.); (X.Y.); (F.C.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Feifei Chang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (L.W.); (J.L.); (M.H.); (X.Y.); (F.C.)
| |
Collapse
|
3
|
Wang T, Xu J, Chen J, Liu P, Hou X, Yang L, Zhang L. Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:346. [PMID: 38337881 PMCID: PMC10856823 DOI: 10.3390/plants13030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
More food is needed to meet the demand of the global population, which is growing continuously. Chemical fertilizers have been used for a long time to increase crop yields, and may have negative effect on human health and the agricultural environment. In order to make ongoing agricultural development more sustainable, the use of chemical fertilizers will likely have to be reduced. Microbial fertilizer is a kind of nutrient-rich and environmentally friendly biological fertilizer made from plant growth-promoting bacteria (PGPR). Microbial fertilizers can regulate soil nutrient dynamics and promote soil nutrient cycling by improving soil microbial community changes. This process helps restore the soil ecosystem, which in turn promotes nutrient uptake, regulates crop growth, and enhances crop resistance to biotic and abiotic stresses. This paper reviews the classification of microbial fertilizers and their function in regulating crop growth, nitrogen fixation, phosphorus, potassium solubilization, and the production of phytohormones. We also summarize the role of PGPR in helping crops against biotic and abiotic stresses. Finally, we discuss the function and the mechanism of applying microbial fertilizers in soil remediation. This review helps us understand the research progress of microbial fertilizer and provides new perspectives regarding the future development of microbial agent in sustainable agriculture.
Collapse
Affiliation(s)
- Tingting Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jiaxin Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 221122, China;
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| |
Collapse
|
4
|
Yuan Y, Shi Y, Liu Z, Fan Y, Liu M, Ningjing M, Li Y. Promotional Properties of ACC Deaminase-Producing Bacterial Strain DY1-3 and Its Enhancement of Maize Resistance to Salt and Drought Stresses. Microorganisms 2023; 11:2654. [PMID: 38004666 PMCID: PMC10673606 DOI: 10.3390/microorganisms11112654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Salt stress and drought stress can decrease the growth and productivity of agricultural crops. Plant growth-promoting bacteria (PGPB) may protect and promote plant growth at abiotic stress. The aim of this study was to search for bacterial strains that can help crops resist rises in drought and salt stresses, to improve crop seed resistance under drought and salt stresses, and to investigate the effect of bacterial strains that can help crop resist external stresses under different stress conditions. Pseudomonas DY1-3, a strain from the soil under the glacier moss community of Tien Shan No. 1, was selected to investigate its growth-promoting effects. Previous studies have shown that this strain is capable of producing ACC (1-aminocyclopropane-1-carboxylic acid) deaminase. In this experiment, multifunctional biochemical test assays were evaluated to determine their potential as PGPB and their bacterial growth-promoting properties and stress-resistant effects on maize plants were verified through seed germination experiments and pot experiments. The results showed that strain DY1-3 has good salt and drought tolerance, as well as the ability to melt phosphorus, fix nitrogen, and produce iron carriers, IAA, EPS, and other pro-biomasses. This study on the growth-promoting effects of the DY1-3 bacterial strain on maize seeds revealed that the germination rate, primary root length, germ length, number of root meristems, and vigor index of the maize seeds were increased after soaking them in bacterial solution under no-stress, drought-stress, and salt-stress environments. In the potting experiments, seedlings in the experimental group inoculated with DY1-3 showed increased stem thicknesses, primary root length, numbers of root meristems, and plant height compared to control seedlings using sterile water. In the study on the physiological properties of the plants related to resistance to stress, the SOD, POD, CAT, and chlorophyll contents of the seedlings in the experimental group, to which the DY1-3 strain was applied, were higher than those of the control group of seedlings to which the bacterial solution was not applied. The addition of the bacterial solution reduced the content of MDA in the experimental group seedlings, which indicated that DY1-3 could positively affect the promotion of maize seedlings and seeds against abiotic stress. In this study, it was concluded that strain DY1-3 is a valuable strain for application, which can produce a variety of pro-biotic substances to promote plant growth in stress-free environments or to help plants resist abiotic stresses. In addition to this, the strain itself has good salt and drought tolerance, making it an option to help crops grown in saline soils to withstand abiotic stresses, and a promising candidate for future application in agricultural biofertilizers.
Collapse
Affiliation(s)
| | | | | | - Yonghong Fan
- National Demonstration Center for Experimental Biology Education, Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830017, China (Z.L.)
| | | | | | | |
Collapse
|