1
|
Song Z, Jung J, Kim TH, Park JH, Song HW, Kang MJ, Kim MH, Pyun JC. Plasma Deposition of Parylene-like Films with Chemical Functional Groups for Immunoassays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63255-63267. [PMID: 39501653 DOI: 10.1021/acsami.4c13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Parylene-like films obtained via the plasma decomposition of parylene precursors with functional groups (amino and formyl) are proposed as an alternative to those obtained via the thermal method. To analyze the chemical functional groups after plasma deposition, a surface analysis of the parylene films using the two different deposition methods was performed via Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The FT-IR analysis revealed that the featured peaks of the chemical functional groups were maintained in the parylene-like films obtained via the plasma deposition method. The XPS analysis revealed that the featured chemical functional groups of parylene-AM and parylene-H were maintained after plasma deposition. The surface energy of the parylene films was estimated by using contact angle measurements. The plasma-deposited parylene films were then employed for protein immobilization via the functional groups using horseradish peroxidase (44 kDa) and green fluorescent protein (25 kDa) as model proteins. The parylene-AM and parylene-H films obtained via plasma deposition exhibited higher immobilization efficiencies than did the same parylene films obtained via thermal deposition. Finally, a competitive immunoassay was obtained by immobilizing the Fv-antibodies on plasma-deposited parylene-AM and parylene-H films via covalent bonding. Using heat-deactivated SARS-CoV-2 as a real sample, the limit of detection at the feasible level for the medical diagnosis of COVID-19 was achieved using a competitive immunoassay based on immobilized Fv-antibodies on plasma-deposited parylene films.
Collapse
Affiliation(s)
- Zhiquan Song
- Department of Materials Science and Engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyun-Woo Song
- Department of Materials Science and Engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Moo-Hwan Kim
- Femto Science Co, Hwaseong 18468, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Kim TH, Song Z, Jung J, Sung JS, Kang MJ, Shim WB, Lee M, Pyun JC. Functionalized Parylene Films for Enhancement of Antibody Production by Hybridoma Cells. ACS APPLIED BIO MATERIALS 2023; 6:3726-3738. [PMID: 37647153 DOI: 10.1021/acsabm.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In this study, the influence of microenvironments on antibody production of hybridoma cells was analyzed using six types of functionalized parylene films, parylene-N and parylene-C (before and after UV radiation), parylene-AM, and parylene-H, and using polystyrene as a negative control. Hybridoma cells were cultured on modified parylene films that produced a monoclonal antibody against the well-known fungal toxin ochratoxin-A. Surface properties were analyzed for each parylene film, such as roughness, chemical functional groups, and hydrophilicity. The proliferation rate of the hybridoma cells was observed for each parylene film by counting the number of adherent cells, and the total amount of produced antibodies from different parylene films was estimated using indirect ELISA. In comparison with the polystyrene, the antibody-production by parylene-H and parylene-AM was estimated to be observed to be as high as 210-244% after the culture of 24 h. These results indicate that the chemical functional groups of the culture plate could influence antibody production. To analyze the influence of the microenvironments of the modified parylene films, we performed cell cycle analysis to estimate the ratio of the G0/G1, S, and G2/M phases of the hybridoma cells on each parylene film. From the normalized proportion of phases of the cell cycle, the difference in antibody production from different surfaces was considered to result from the difference in the proliferation rate of hybridoma cells, which occurred from the different physical and chemical properties of the parylene films. Finally, protein expression was analyzed using an mRNA array to determine the effect of parylene films on protein expression in hybridoma cells. The expression of three antibody production-related genes (CD40, Sox4, and RelB) was analyzed in hybridoma cells cultured on modified parylene films.
Collapse
Affiliation(s)
- Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Zhiquan Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jeong-Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Min-Jung Kang
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Won-Bo Shim
- Department of Food Science and Technology & Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering and △Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
3
|
Alghamdi MF, Redwan EM. Advances in the diagnosis of autoimmune diseases based on citrullinated peptides/proteins. Expert Rev Mol Diagn 2021; 21:685-702. [PMID: 34024239 DOI: 10.1080/14737159.2021.1933946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Autoimmune diseases are still one of the hard obstacles associated with humanity. There are many exogenous and endogenous etiological factors behind autoimmune diseases, which may be combined or dispersed to stimulate the autoimmune responses. Protein citrullination represents one of these factors. Harnessing specific citrullinated proteins/peptides could early predict and/or diagnose some of the autoimmune diseases. Many generations of diagnostic tools based on citrullinated peptides with comparable specificity/sensitivity are available worldwide.Areas covered: In this review, we discuss the deimination reaction behind the citrullination of most known autoantigens targeted, different generations of diagnostic tools based on citrullinated probes with specificity/sensitivity of each as well as newly developed assays. Furthermore, the most advanced molecular analytical tools to detect the citrullinated residues in the biological fluid and their performance are also evaluated, providing new avenues to early detect autoimmune diseases with high accuracy.Expert opinion: With the current specificity/sensitivity tools available for autoimmune disease detection, emphasis must be placed on developing more advance and effective, early, rapid, and simple diagnostic devices for autoimmune disease monitoring (similar to a portable device for sugar test at home). The molecular analytical devices with dual and/or multiplexe functions should be more simplified and invested in clinical laboratories.
Collapse
Affiliation(s)
- Mohammed F Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Laboratory Department, University Medical Services Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
4
|
Electrochemical Immunosensor for the Early Detection of Rheumatoid Arthritis Biomarker: Anti-Cyclic Citrullinated Peptide Antibody in Human Serum Based on Avidin-Biotin System. SENSORS 2020; 21:s21010124. [PMID: 33379138 PMCID: PMC7795521 DOI: 10.3390/s21010124] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that produces a progressive inflammatory response that leads to severe pain, swelling, and stiffness in the joints of hands and feet, followed by irreversible damage of the joints. The authors developed a miniaturized, label-free electrochemical impedimetric immunosensor for the sensitive and direct detection of arthritis Anti-CCP-ab biomarker. An interdigitated-chain-shaped microelectrode array (ICE) was fabricated by taking the advantage of microelectromechanical systems. The fabricated ICE was modified with a self-assembled monolayer (SAM) of Mercaptohexanoic acid (MHA) for immobilization of the synthetic peptide bio-receptor (B-CCP). The B-CCP was attached onto the surface of SAM modified ICE through a strong avidin-biotin bio-recognition system. The modified ICE surface with the SAM and bio-molecules (Avidin, B-CCP, Anti-CCP-ab and BSA) was morphologically and electrochemically characterized. The change in the sensor signal upon analyte binding on the electrode surface was probed through the electrochemical impedance spectroscopy (EIS) property of charge-transfer resistance (Rct) of the modified electrodes. EIS measurements were target specific and the sensor response was linearly increased with step wise increase in target analyte (Anti-CCP-ab) concentrations. The developed sensor showed a linear range for the addition of Anti-CCP-ab between 1 IU mL−1 → 800 IU mL−1 in phosphate buffered saline (PBS) and Human serum (HS), respectively. The sensor showed a limit of detection of 0.60 IU mL−1 and 0.82 IU mL−1 in the PBS and HS, respectively. The develop bio-electrode showed a good reproducibility (relative standard deviation (RSD), 1.52%), selectivity and stability (1.5% lost at the end of 20th day) with an acceptable recovery rate (98.0% → 101.18%) and % RSD’s for the detection of Anti-CCP-ab in spiked HS samples.
Collapse
|
5
|
Ghorbani F, Abbaszadeh H, Mehdizadeh A, Ebrahimi-Warkiani M, Rashidi MR, Yousefi M. Biosensors and nanobiosensors for rapid detection of autoimmune diseases: a review. Mikrochim Acta 2019; 186:838. [DOI: 10.1007/s00604-019-3844-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
|
6
|
Electrical Characteristics and pH Response of a Parylene-H Sensing Membrane in a Si-Nanonet Ion-Sensitive Field-Effect Transistor. SENSORS 2018; 18:s18113892. [PMID: 30424510 PMCID: PMC6264099 DOI: 10.3390/s18113892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 01/15/2023]
Abstract
We report the electrical characteristics and pH responses of a Si-nanonet ion-sensitive field-effect transistor with ultra-thin parylene-H as a gate sensing membrane. The fabricated device shows excellent DC characteristics: a low subthreshold swing of 85 mV/dec, a high current on/off ratio of ~107 and a low gate leakage current of ~10−10 A. The low interface trap density of 1.04 × 1012 cm−2 and high field-effect mobility of 510 cm2V−1s−1 were obtained. The pH responses of the devices were evaluated in various pH buffer solutions. A high pH sensitivity of 48.1 ± 0.5 mV/pH with a device-to-device variation of ~6.1% was achieved. From the low-frequency noise characterization, the signal-to-noise ratio was extracted as high as ~3400 A/A with the lowest noise equivalent pH value of ~0.002 pH. These excellent intrinsic electrical and pH sensing performances suggest that parylene-H can be promising as a sensing membrane in an ISFET-based biosensor platform.
Collapse
|
7
|
Kim M, Park JM, Yun TG, Noh JY, Kang MJ, Pyun JC. TiO 2 Nanowires from Wet-Corrosion Synthesis for Peptide Sequencing Using Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33790-33802. [PMID: 30212181 DOI: 10.1021/acsami.8b03804] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, TiO2 nanowires synthesized from a wet-corrosion process were presented for peptide sequencing by photocatalytic reaction with UV radiation. For the photocatalytic decomposition of peptides, the peptide sample was dropped on a target plate containing synthesized TiO2 nanowire zones and UV-irradiated. Subsequently, the target plate was analyzed by laser desorption/ionization time-of-flight (LDI-TOF) mass spectrometry using the synthesized TiO2 nanowires as a solid matrix. The feasibility of peptide sequencing based on the photocatalytic reaction with the synthesized TiO2 nanowires was demonstrated using six types of peptides GHP9 (G1-H-P-Q-G2-K1-K2-K3-K4, 1006.59 Da), BPA-1(K1-S1-L-E-N-S2-Y-G1-G2-G3-K2-K3-K4, 1394.74 Da), PreS1(F1-G-A-N1-S-N2-N3-P1-D1-W-D2-F2-N4-P2-N5, 1707.68 Da), HPQ peptide-1 (G-Y-H-P-Q-R-K, 884.45 Da), HPQ peptide-2 (K-R-H-P-Q-Y-G, 884.45 Da), and HPQ peptide-3 (R-Y-H-P-Q-G-K, 884.45 Da). The identification of three different peptides with the same molecular weight was also demonstrated by using the synthesized TiO2 nanowires for their photocatalytic decomposition as well as for LDI-TOF mass spectrometry as a solid-matrix.
Collapse
Affiliation(s)
- Mira Kim
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 03722 , Korea
| | - Jong-Min Park
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 03722 , Korea
| | - Tae Gyeong Yun
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 03722 , Korea
| | - Joo-Yoon Noh
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 03722 , Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST) , Seoul 02792 , Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 03722 , Korea
| |
Collapse
|
8
|
Liu X, Jiang H. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2805. [PMID: 29207528 PMCID: PMC5750678 DOI: 10.3390/s17122805] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Abstract
Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China.
| | - Hui Jiang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
9
|
Ko H, Choi YH, Chang SY, Lee GY, Song HW, Chang YW, Kang MJ, Pyun JC. Surface modification of parylene-N with UV-treatment to enhance the protein immobilization. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Jung HW, Chang YW, Lee GY, Cho S, Kang MJ, Pyun JC. A capacitive biosensor based on an interdigitated electrode with nanoislands. Anal Chim Acta 2014; 844:27-34. [PMID: 25172812 DOI: 10.1016/j.aca.2014.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 01/30/2023]
Abstract
A capacitive biosensor based on an interdigitated electrode (IDE) with nanoislands was developed for label-free detection of antigen-antibody interactions. To enable sensitive capacitive detection of protein adsorption, the nanoislands were fabricated between finger electrodes of the IDE. The effect of the nanoislands on the sensitive capacitive measurement was estimated using horseradish peroxidase (HRP) as a model protein. Additionally, a parylene-A film was coated on the IDE with nanoislands to improve the efficiency of protein immobilization. By using HRP and hepatitis B virus surface antigen (HBsAg) as model analytes, the effect of the parylene-A film on the capacitive detection of protein adsorption was demonstrated.
Collapse
Affiliation(s)
- Ha-Wook Jung
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea
| | - Young Wook Chang
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea
| | - Ga-yeon Lee
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea
| | - Sungbo Cho
- Department of Biomedical Engineering, Gachon University, Incheon 406-799, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea.
| |
Collapse
|
11
|
Yoo G, Bong JH, Kim S, Jose J, Pyun JC. Microarray based on autodisplayed Ro proteins for medical diagnosis of systemic lupus erythematosus (SLE). Biosens Bioelectron 2014; 57:213-8. [DOI: 10.1016/j.bios.2014.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/30/2014] [Accepted: 02/10/2014] [Indexed: 11/30/2022]
|
12
|
Top-down synthesized TiO2 nanowires as a solid matrix for surface-assisted laser desorption/ionization time-of-flight (SALDI-TOF) mass spectrometry. Anal Chim Acta 2014; 836:53-60. [DOI: 10.1016/j.aca.2014.05.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/22/2014] [Accepted: 05/25/2014] [Indexed: 11/21/2022]
|
13
|
Choi YH, Lee GY, Ko H, Chang YW, Kang MJ, Pyun JC. Development of SPR biosensor for the detection of human hepatitis B virus using plasma-treated parylene-N film. Biosens Bioelectron 2014; 56:286-94. [DOI: 10.1016/j.bios.2014.01.035] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/03/2014] [Accepted: 01/19/2014] [Indexed: 11/29/2022]
|
14
|
Performance characteristic of anti-cyclic citrullinated peptide (CCP) assay on Korean rheumatoid arthritis (RA) patients and healthy controls. J Pharm Biomed Anal 2014; 92:69-73. [DOI: 10.1016/j.jpba.2014.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/18/2022]
|
15
|
Kim JI, Lee GY, Ko H, Kang MJ, Pyun JC. Covalent protein immobilization with a parylene-H film for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1149-1154. [PMID: 23592120 DOI: 10.1002/rcm.6555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE For the sensitive analysis of receptor-ligand interactions by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS), receptor proteins should be immobilized on a target plate with a high surface density. In this work, a parylene-H film with formyl groups was developed for the efficient covalent immobilization of receptor proteins for MALDI-TOF MS. METHODS The parylene-H film was thermally deposited on a target plate and receptor proteins were covalently immobilized. The surface properties of the parylene-H film were analyzed by atomic force microscopy (AFM) and cyclic voltammetry (CV). The immobilization efficiency of the parylene-H film was analyzed by fluorescence imaging with streptavidin and fluorescence-labeled biotin. MALDI-TOF MS was performed using the parylene-H-coated target plate with streptavidin and different concentrations of biotinylated peptide as the receptor and ligand, respectively. RESULTS The parylene-H film on a target plate had a flat surface (Rq : ±2.755 nm) without any pinholes and could be regarded to be electrically conductive under an electric potential of 30 kV. The fluorescence image proved that the parylene-H film improved the protein immobilization efficiency as well as ligand detection sensitivity. The mass spectra quantitatively revealed peaks from the ligand molecules without any interference peaks from the immobilized receptor proteins. CONCLUSIONS A parylene-H film with formyl groups was thermally deposited on a target plate and the receptor protein was covalently immobilized on the target plate. The interactions of ligand molecules with the immobilized receptor proteins were quantitatively analyzed by MALDI-TOF MS.
Collapse
Affiliation(s)
- Jo-Il Kim
- Department of Materials Sciences and Engineering, Yonsei University, Seoul, Korea
| | | | | | | | | |
Collapse
|
16
|
Li T, Byun JY, Kim BB, Shin YB, Kim MG. Label-free homogeneous FRET immunoassay for the detection of mycotoxins that utilizes quenching of the intrinsic fluorescence ofantibodies. Biosens Bioelectron 2013; 42:403-8. [DOI: 10.1016/j.bios.2012.10.085] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
|
17
|
Lee GY, Choi YH, Chung HW, Ko H, Cho S, Pyun JC. Capacitive immunoaffinity biosensor based on vertically paired ring-electrodes. Biosens Bioelectron 2013; 40:227-32. [DOI: 10.1016/j.bios.2012.07.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/12/2012] [Accepted: 07/18/2012] [Indexed: 11/16/2022]
|