1
|
Clark JA, Robinson S, Espinoza EM, Bao D, Derr JB, Croft L, O'Mari O, Grover WH, Vullev VI. Poly(dimethylsiloxane) as a room-temperature solid solvent for photophysics and photochemistry. Phys Chem Chem Phys 2024; 26:8062-8076. [PMID: 38372740 DOI: 10.1039/d3cp05413f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Medium viscosity strongly affects the dynamics of solvated species and can drastically alter the deactivation pathways of their excited states. This study demonstrates the utility of poly(dimethylsiloxane) (PDMS) as a room-temperature solid-state medium for optical spectroscopy. As a thermoset elastic polymer, PDMS is transparent in the near ultraviolet, visible, and near infrared spectral regions. It is easy to mould into any shape, forming surfaces with a pronounced smoothness. While PDMS is broadly used for the fabrication of microfluidic devices, it swells in organic solvents, presenting severe limitations for the utility of such devices for applications employing non-aqueous fluids. Nevertheless, this swelling is reversible, which proves immensely beneficial for loading samples into the PDMS solid matrix. Transferring molecular-rotor dyes (used for staining prokaryotic cells and amyloid proteins) from non-viscous solvents into PDMS induces orders-of-magnitude enhancement of their fluorescence quantum yield and excited-state lifetimes, providing mechanistic insights about their deactivation pathways. These findings demonstrate the unexplored potential of PDMS as a solid solvent for optical applications.
Collapse
Affiliation(s)
- John A Clark
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Samantha Robinson
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Eli M Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Duoduo Bao
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Luca Croft
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Omar O'Mari
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - William H Grover
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Valentine I Vullev
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
- Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Malaguarnera G, Graute M, Homs Corbera A. The translational roadmap of the gut models, focusing on gut-on-chip. OPEN RESEARCH EUROPE 2023; 1:62. [PMID: 37645178 PMCID: PMC10445823 DOI: 10.12688/openreseurope.13709.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 08/31/2023]
Abstract
It is difficult to model in vitro the intestine when seeking to include crosstalk with the gut microbiota, immune and neuroendocrine systems. Here we present a roadmap of the current models to facilitate the choice in preclinical and translational research with a focus on gut-on-chip. These micro physiological systems (MPS) are microfluidic devices that recapitulate in vitro the physiology of the intestine. We reviewed the gut-on-chips that had been developed in academia and industries as single chip and that have three main purpose: replicate the intestinal physiology, the intestinal pathological features, and for pharmacological tests.
Collapse
Affiliation(s)
| | - Miriam Graute
- R&D department, Cherry Biotech SAS, Rennes, Brittany, 35000, France
| | | |
Collapse
|
3
|
Malaguarnera G, Graute M, Homs Corbera A. The translational roadmap of the gut models, focusing on gut-on-chip. OPEN RESEARCH EUROPE 2023; 1:62. [PMID: 37645178 PMCID: PMC10445823 DOI: 10.12688/openreseurope.13709.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 08/31/2023]
Abstract
It is difficult to model in vitro the intestine when seeking to include crosstalk with the gut microbiota, immune and neuroendocrine systems. Here we present a roadmap of the current models to facilitate the choice in preclinical and translational research with a focus on gut-on-chip. These micro physiological systems (MPS) are microfluidic devices that recapitulate in vitro the physiology of the intestine. We reviewed the gut-on-chips that had been developed in academia and industries as single chip and that have three main purpose: replicate the intestinal physiology, the intestinal pathological features, and for pharmacological tests.
Collapse
Affiliation(s)
| | - Miriam Graute
- R&D department, Cherry Biotech SAS, Rennes, Brittany, 35000, France
| | | |
Collapse
|
4
|
Muscular Thin Films for Label-Free Mapping of Excitation Propagation in Cardiac Tissue. Ann Biomed Eng 2020; 48:2425-2437. [PMID: 32314299 DOI: 10.1007/s10439-020-02513-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/11/2020] [Indexed: 01/10/2023]
Abstract
Muscular thin films (MTFs), have already found a variety of applications in cardiac tissue engineering and in building of lab-on-a-chip systems. Here we present a novel approach to label-free mapping of excitation waves in the cardiomyocyte cell cultures with the use of MTFs. Neonatal rat ventricular cardiomyocytes were cultured on polydimethylsiloxane (PDMS) thin films and observed by means of off-axis illumination. Inflexions of the membrane created by the contraction of cardiomyocytes led to formation of patterns of bright and dark areas on the surface of the membrane. These patterns were recorded and analyzed for the monitoring of the contraction propagation. The method was compared with a standard optical mapping technique based on the use of a Ca2+-sensitive fluorescent dye. A good consistency of the results obtained by these two methods was demonstrated. The proposed method is non-toxic and might be of particular interest for the purpose of continuous monitoring in test systems based on human induced pluripotent stem cells.
Collapse
|
5
|
Angelini A, Agero U, Ferrarese Lupi F, Fretto M, Pirri F, Frascella F. Real-time and reversible light-actuated microfluidic channel squeezing in dye-doped PDMS. SOFT MATTER 2020; 16:4383-4388. [PMID: 32239055 DOI: 10.1039/d0sm00217h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The azobenzene chromophore is used as a functional dye for the development of smart microfluidic devices. A single layer microfluidic channel is produced, exploiting the potential of a dye doped PDMS formulation. The key advantage of this approach is the possibility to control the fluid flow by means of a simple light stimulus. Furthermore, the deformation can be controlled in time, space and intensity, giving rise to several degrees of freedom in the actuation of the channel squeezing. A future perspective will be the implementation of the microfluidic platform with structured light, to have the possibility to control the flow in a parallel and reversible manner at several points, modifying the pattern in real time.
Collapse
Affiliation(s)
- Angelo Angelini
- Nanoscience and Materials Division, Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy and Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Ubirajara Agero
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Federico Ferrarese Lupi
- Nanoscience and Materials Division, Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
| | - Matteo Fretto
- Nanoscience and Materials Division, Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
| | - Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Francesca Frascella
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
6
|
Ali S, Bae J, Lee CH. Stretchable photo sensor using perylene/graphene composite on ridged polydimethylsiloxane substrate. OPTICS EXPRESS 2015; 23:30583-30591. [PMID: 26698691 DOI: 10.1364/oe.23.030583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To apply in wearable electronics, we propose a stretchable photo sensor that detects an inversely changed resistance by varying light intensity, which is stably operated up to 25% axial strain. Especially, the stretchabity of the proposed photo sensor is achived by using a uniform ridged substrate made of polydimethylsiloxane (PDMS). The proposed device is composed of a thin film of perylene/graphene composite, which is sandwiched between bottom and top indium tin oxide (ITO) transparent electrodes fabricated through electro-hydrodynamic (EHD) technique. The electrical conductivity of perylene is improved by blending graphene with it. The resistance of the proposed photo sensor changes from 108 MΩ to 87 MΩ within the light intensity range of 0 to 400 lux, respectively. Furthermore, the flexibility is verified through a bendability test from 16 mm down to 0 mm and a bending endurance test for more than 1000 cycles. Uniform and smooth deposition of the active layer is tested through surface morphology characterization.
Collapse
|