1
|
Meng Z, Huang X, Qiao M, Song L, Liu Y, Hai D. Lactic Acid Bacteria Surface Proteins in the Mechanisms of Cell Adhesion and Immunoregulation. Food Sci Nutr 2024; 12:10148-10163. [PMID: 39723039 PMCID: PMC11666997 DOI: 10.1002/fsn3.4517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 12/28/2024] Open
Abstract
This study delves into the role of lactic acid bacteria (LAB) surface proteins in cell adhesion and immunoregulation. Using fluorescence microscopy, we observed distinct adhesion patterns on various cell types. LAB surface proteins demonstrated concentration-dependent inhibition of Salmonella adhesion, with LAB69 exhibiting potent antagonistic effects. Genetic expression analysis revealed nuanced responses in key genes (MD2, TLR4, IL-10, MUC3, MIF) across different cell types, highlighting the diverse immunomodulatory effects of LAB surface proteins. Modulation of pro-inflammatory (TNF-α) and anti-inflammatory (IL-10) cytokines further emphasized the complex interplay. In conclusion, this study underscores the pivotal role of LAB surface proteins in mediating cell adhesion and immunoregulation, providing a foundation for isolating specific immunomodulatory molecules within LAB surface proteins for potential applications in microbial ecological agents.
Collapse
Affiliation(s)
- Ziheng Meng
- College of Food Science and TechnologyHenan Agricultural UniversityZhengzhouChina
| | - Xianqing Huang
- College of Food Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety ControlZhengzhouChina
| | - Mingwu Qiao
- College of Food Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety ControlZhengzhouChina
| | - Lianjun Song
- College of Food Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety ControlZhengzhouChina
| | - Yufei Liu
- College of Food Science and TechnologyHenan Agricultural UniversityZhengzhouChina
| | - Dan Hai
- College of Food Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety ControlZhengzhouChina
| |
Collapse
|
2
|
Choudhary R, Singh KS, Bisht S, Kumar S, Mohanty AK, Grover S, Kaushik JK. Host-microbe interaction and pathogen exclusion mediated by an aggregation-prone surface layer protein of Lactobacillus helveticus. Int J Biol Macromol 2023:125146. [PMID: 37271267 DOI: 10.1016/j.ijbiomac.2023.125146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/12/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Probiotic surface layer proteins (Slps) have multiple functions and bacterial adhesion to host cells is one of them. The precise role of Slps in cellular adhesion is not well understood due to its low native protein yield and self-aggregative nature. Here, we report the recombinant expression and purification of biologically active Slp of Lactobacillus helveticus NCDC 288 (SlpH) in high yield. SlpH is a highly basic protein (pI = 9.4), having a molecular weight of 45 kDa. Circular Dichroism showed a prevalence of beta-strands in SlpH structure and resistance to low pH. SlpH showed binding to human intestinal tissue, enteric Caco-2 cell line, and porcine gastric mucin, but not with fibronectin, collagen type IV and laminin. SlpH inhibited the binding of the enterotoxigenic E. coli by 70 % and 76 % and that of Salmonella Typhimurium SL1344 by 71 % and 75 % to enteric Caco-2 cell line in the exclusion and competition assays, respectively. The pathogen exclusion and competition activity and tolerance to harsh gastrointestinal conditions show the potential for developing SlpH as a prophylactic or therapeutic agent against enteric pathogens.
Collapse
Affiliation(s)
- Ritu Choudhary
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Kumar Siddharth Singh
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Sonu Bisht
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Sudarshan Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Ashok Kumar Mohanty
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Sunita Grover
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Jai Kumar Kaushik
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India).
| |
Collapse
|
3
|
Bang WY, Kim H, Chae SA, Yang SY, Ban OH, Kim TY, Kwon HS, Jung YH, Yang J. A Quadruple Coating of Probiotics for Enhancing Intestinal Adhesion and Competitive Exclusion of Salmonella Typhimurium. J Med Food 2022; 25:213-218. [PMID: 35072526 DOI: 10.1089/jmf.2021.k.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Previously, our group showed that a quadruple coating of probiotics resulted in higher survivability of probiotics under high acid, bile salt, and thermal stresses. In this study, we evaluated the effect of the quadruple coating of probiotics on adhesive properties as well as on competitive exclusion of Salmonella Typhimurium in Caco-2 cells. We found that the quadruple coating of probiotics exhibited an overall increased adhesion property (up to 10.8-fold) and increased competitive exclusion of Salmonella Typhimurium (up to 4.3-fold). Thus, this study has significant implications and can lead to the development of methods that can improve the adhesive ability of probiotics as well as the adhesive inhibition of pathogens.
Collapse
Affiliation(s)
| | - Hayoung Kim
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, Korea
| | - Seung A Chae
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, Korea
| | - Soo-Yeon Yang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, Korea
| | - O-Hyun Ban
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, Korea.,School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Tae-Yoon Kim
- Ildong Pharmaceutical, Hwaseong-si, Gyeonggi-do, Korea
| | | | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Jungwoo Yang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, Korea
| |
Collapse
|
4
|
Protective function of surface layer protein from Lactobacillus casei fb05 against intestinal pathogens in vitro. Biochem Biophys Res Commun 2021; 546:15-20. [PMID: 33561743 DOI: 10.1016/j.bbrc.2021.01.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
Escherichia coli and Salmonella are common pathogenic bacteria in human intestine, which can infect epithelial cells and cause diseases. Adhesion to intestinal tissue is the first step of pathogen infection. This work was to investigate the protective function of surface layer protein (SLP) from Lactobacillus casei fb05 against the harmful effects of E. coli and Salmonella on intestinal tissue (collagen and HT-29 cells). The SLP of L. casei fb05 was identified by transmission electron microscopy and SDS-PAGE. The purified SLP could reduce the adhesion of E. coli and Salmonella to collagen and HT-29 cells as observed by light microscope. The flow cytometry results showed that the L. casei fb05 SLP decreased the two pathogens-induced apoptosis of HT-29 cells by about 45%-49%. In addition, the activation of caspase-9 and caspase-3 caused by the two pathogens was significantly declined by the interference of the L. casei fb05 SLP. All the findings demonstrated that the L. casei fb05 SLP could decrease the deleterious effects of E. coli and Salmonella on intestinal tract in two ways: reducing pathogen adhesion and inhibiting pathogen-induced apoptosis. The potential of L. casei fb05 SLP in the treatment of intestinal diseases might be explored in this work.
Collapse
|
5
|
Zielińska D, Długosz E, Zawistowska-Deniziak A. Functional Properties of Food Origin Lactobacillus in the Gastrointestinal Ecosystem-In Vitro Study. Probiotics Antimicrob Proteins 2019; 11:820-829. [PMID: 30141062 PMCID: PMC6695375 DOI: 10.1007/s12602-018-9458-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the current study, the probiotic activity of ten Lactobacillus (Lb.) strains, previously isolated from the traditional Polish fermented vegetable, was characterized. Strains were assessed for adhesion to human intestinal epithelial Caco-2 cells and regulation of selected cytokine production (IL-1β, IL-6, IL-10, IL-23, and TNF-α) by THP-1 macrophages. The effect of tested strains on Caco-2 cell apoptosis was also investigated using a caspase-3 assay. Adhesion capacity was strain-dependent (1.29-8.24% of initial population). Highest adhesion was observed for Lb. brevis O24. All Lactobacillus strains investigated in this study stimulated two- to threefold increase in TNF-α, IL-1β, and IL-6 production, compared to the control. Additionally, selected strains of Lactobacillus caused a significant decrease of pro-inflammatory cytokine production by lipopolysaccharide (LPS)-stimulated THP-1 cells. Almost all Lactobacillus investigated in this study are potent stimulators of IL-10 production. All tested Lactobacillus cells slightly increased the caspase-3 activity in Caco-2 cells. Lb. casei O18 was the most inducing strain. The tested strains had no effect on staurosporine (STS)-induced caspase-3 activity. According to these results, the most promising strains are Lb. plantarum O20, two strains Lb. brevis O22 and O24, and Lb. rhamnosus K3. These newly identified lactobacilli hold promise for use as probiotics in functional food applications.
Collapse
Affiliation(s)
- Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Science - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Ewa Długosz
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Science - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Anna Zawistowska-Deniziak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| |
Collapse
|
6
|
Zhang X, Li P, Zheng Q, Hou J. Lactobacillus acidophilus S-layer protein-mediated inhibition of PEDV-induced apoptosis of Vero cells. Vet Microbiol 2019; 229:159-167. [PMID: 30642593 PMCID: PMC7127310 DOI: 10.1016/j.vetmic.2019.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022]
Abstract
Lactobacillus S-layer protein plays an inhibitory role during PEDV infection. In Vero cells infected with PEDV, apoptosis was mediated by caspase-8/3 activation. Lactobacillus S-layer protein inhibited PEDV-induced apoptosis in Vero cells. S-layer protein reduced caspase-8/3 activation against PEDV-induced apoptosis.
To gain insight into the mechanism of Lactobacillus acidophilus (L. acidophilus) S-layer protein antiviral activity, we examined how S-layer protein impacts porcine epidemic diarrhea virus (PEDV) infection and PEDV-induced apoptosis of Vero cells. Pretreatment (exclusion assay), coincubation (competition assay), and post-treatment (displacement assay) of PEDV-infected Vero cells with the S-layer protein was examined. Interestingly, significant inhibition of PEDV by S-layer protein was only observed in the exclusion assay. In Vero cells infected with PEDV, we found that apoptosis was mediated by activation of caspase-8 and caspase-3 in the late stage of infection. When PEDV-infected Vero cells were pretreated with S-layer protein, rates of Vero cell apoptosis were markedly decreased and cell damage was significantly reduced, as evaluated by flow cytometry and microscopy. Detailed analyses showed that the S-layer protein inhibited caspase-8 and caspase-3 activity. Taken together, our results suggest that L. acidophilus S-layer protein plays an inhibitory role during PEDV infection of Vero cells, and that the antagonistic activity of the protein is not via competition with PEDV for binding sites. In addition, the findings suggest that L. acidophilus S-layer protein protects against PEDV-induced apoptosis through reduced caspase-8 and caspase-3 activation in the later stages of infection. This mechanism may represent a novel approach for antagonizing PEDV and other viruses.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Pengcheng Li
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China; College of Life Science and Resources and Environment, Yichun University, Yichun, 336000, China.
| | - Qisheng Zheng
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China
| |
Collapse
|
7
|
He Y, Xu X, Zhang F, Xu D, Liu Z, Tao X, Wei H. Anti-adhesion of probiotic Enterococcus faecium WEFA23 against five pathogens and the beneficial effect of its S-layer proteins against Listeria monocytogenes. Can J Microbiol 2018; 65:175-184. [PMID: 30395485 DOI: 10.1139/cjm-2018-0031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Enterococcus faecium WEFA23 is a potential probiotic strain isolated from Chinese infant feces. In this study, the antagonistic activity of E. faecium WEFA23 on adhesion to pathogens was investigated. Enterococcus faecium WEFA23 was able to compete, exclude, and displace the adhesion of Escherichia coli O157:H7, Salmonella Typhimurium ATCC 13311, Listeria monocytogenes CMCC54007, Staphylococcus aureus CMCC26003, and Shigella sonnei ATCC 25931 to Caco-2 cells. Among them, L. monocytogenes achieved the strongest inhibition rate in both competition and displacement assays. Those anti-adhesion capacities were related to the bacterial physicochemical properties (hydrophobicity, auto-aggregation, and co-aggregation) of the bacterial surface. For L. monocytogenes, the anti-adhesion capacity was affected by the heat treatment, cell density, and growth phase of E. faecium WEFA23; 108 colony-forming units of viable cells per millilitre at the stationary phase exhibited the strongest anti-adhesion activity. In addition, removal of S-layer proteins of E. faecium WEFA23 by treatment with 5 mol/L LiCl significantly decreased its adhesion capacity, and those S-layer proteins were able to compete, displace, and exclude L. monocytogenes at different levels. Both cells and S-layer proteins of E. faecium WEFA23 significantly reduced the apoptosis of Caco-2 cells induced by L. monocytogenes, which was mediated by caspase-3 activation. This study might be helpful in understanding the anti-adhesion mechanism of probiotics against pathogens.
Collapse
Affiliation(s)
- Yao He
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| | - Xiongpeng Xu
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| | - Fen Zhang
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| | - Di Xu
- b Technische Mikrobiologie, Technische Universität München, Freising 85354, Germany
| | - Zhengqi Liu
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| | - Xueying Tao
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| | - Hua Wei
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| |
Collapse
|
8
|
Zhang Y, Shi X, Hao S, Lu Q, Zhang L, Han X, Lu W. Inhibition of Shigella sonnei-induced epithelial barrier disruption by surface-layer associated proteins of lactobacilli from Chinese fermented food. J Dairy Sci 2018; 101:1834-1842. [PMID: 29331460 DOI: 10.3168/jds.2017-13417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022]
Abstract
Surface-layer associated proteins (SLAP) of Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L were examined to identify the functional basis for their protection within intestinal epithelial cells. The results showed that SLAP of M5-L and Q8-L remained active in a trypsin solution and retained a 45-kDa protein band, similar to that observed in controls. In contrast, under conditions of simulated gastric juice, the SLAP were partially degraded. Inhibitory effects of SLAP on adherence of Shigella sonnei to HT-29 cells were assessed with use of exclusion, competition, and replacement assays. In response to M5-L at 50 μg/mL SLAP, an inhibition ratio of 33% was obtained, while for Q8-L at 400 μg/mL SLAP, the inhibition ratio was 48%. Hoechst 33258 test results showed that cells infected with S. sonnei and co-incubated with SLAP of M5-L and Q8-L were only partially apoptotic, with apoptosis rates of 37.67 and 43.67%, respectively. These levels of apoptosis were substantially lower than that observed with cells infected with S. sonnei alone. In addition, the SLAP of Q8-L and M5-L reduced downstream caspase-1 activity and further modified apoptotic cell damage. Finally, SLAP of M5-L and Q8-L were also able to prevent S. sonnei-induced membrane damage by inhibiting delocalization of zonula occludens (ZO)-1 and reducing the amount of occludin produced by S. sonnei.
Collapse
Affiliation(s)
- Yingchun Zhang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiaolu Shi
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Siqi Hao
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qianhui Lu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xue Han
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Weihong Lu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
9
|
Singh TP, Kaur G, Kapila S, Malik RK. Antagonistic Activity of Lactobacillus reuteri Strains on the Adhesion Characteristics of Selected Pathogens. Front Microbiol 2017; 8:486. [PMID: 28377765 PMCID: PMC5359300 DOI: 10.3389/fmicb.2017.00486] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/08/2017] [Indexed: 01/23/2023] Open
Abstract
Adhesion ability of probiotics is the key factor that decides their colonization in the gastrointestinal tract and potential to inhibit pathogens. Therefore, adhesion ability can be considered as a key determinant for probiotic efficacy. Presents study documents the antagonistic activity of viable/untreated, Lithium chloride (LiCl) treated or heat-killed forms of eight probiotic Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. All strains investigated were able to adhere to Caco-2 cells. L. reuteri strains tested were able to inhibit and displace (P < 0.05) the adhesion of Escherichia coli ATCC25922, Salmonella typhi NCDC113, Listeria monocytogenes ATCC53135, and Enterococcus faecalis NCDC115. The probiotic strain L. reuteri LR6 showed the strongest adhesion and pathogen inhibition ability among the eight L. reuteri strains tested. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting the involvement of various mechanisms. The adhesion and antagonistic potential of the probiotic strains were significantly decreased upon exposure to 5 M LiCl, showing that surface molecules, proteinaceous in nature, are involved. The heat-killed forms of the probiotic L. reuteri strains also inhibited the attachment of selected pathogens to Caco-2 cells. In conclusion, in vitro assays showed that L. reuteri strains, as viable or heat-killed forms, are adherent to Caco-2 cells and are highly antagonistic to pathogens tested in which surface associated proteins play an important role.
Collapse
Affiliation(s)
- Tejinder P Singh
- Dairy Microbiology Division, National Dairy Research Institute Karnal, India
| | - Gurpreet Kaur
- Dairy Microbiology Division, National Dairy Research Institute Karnal, India
| | - Suman Kapila
- Animal Biochemistry Division, National Dairy Research Institute Karnal, India
| | - Ravinder K Malik
- Dairy Microbiology Division, National Dairy Research Institute Karnal, India
| |
Collapse
|
10
|
Meng J, Zhang QX, Lu RR. Surface layer protein from Lactobacillus acidophilus NCFM inhibit intestinal pathogen-induced apoptosis in HT-29 cells. Int J Biol Macromol 2017; 96:766-774. [DOI: 10.1016/j.ijbiomac.2016.12.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 09/29/2016] [Accepted: 12/31/2016] [Indexed: 12/18/2022]
|
11
|
Singh TP, Malik RK, Kaur G. Cell surface proteins play an important role in probiotic activities of Lactobacillus reuteri. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s41110-016-0007-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Meng J, Gao SM, Zhang QX, Lu RR. Murein hydrolase activity of surface layer proteins from Lactobacillus acidophilus against Escherichia coli. Int J Biol Macromol 2015; 79:527-32. [DOI: 10.1016/j.ijbiomac.2015.03.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/15/2015] [Accepted: 03/19/2015] [Indexed: 12/24/2022]
|
13
|
Meng J, Zhu X, Gao SM, Zhang QX, Sun Z, Lu RR. Characterization of surface layer proteins and its role in probiotic properties of three Lactobacillus strains. Int J Biol Macromol 2014; 65:110-4. [DOI: 10.1016/j.ijbiomac.2014.01.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 11/29/2022]
|
14
|
Zhang W, Wang H, Liu J, Zhao Y, Gao K, Zhang J. Adhesive ability means inhibition activities for lactobacillus against pathogens and S-layer protein plays an important role in adhesion. Anaerobe 2013; 22:97-103. [PMID: 23792230 DOI: 10.1016/j.anaerobe.2013.06.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 05/16/2013] [Accepted: 06/12/2013] [Indexed: 01/19/2023]
Abstract
Eighty-five strains of lactobacillus were isolated from the pig intestine and identified by sequencing analysis based on 16S rRNA gene, from which five lactobacillus strains with high adhesive ability were selected. The inhibition ability of the five lactobacillus strains with or without S-layer proteins against adherence of Escherichia coli K88 and Salmonella enteritidis 50335 to Caco-2 was evaluated in vitro with Lactobacillus rhamnosus GG strain (LGG) as a positive control. In addition, tolerance of lactobacilli to heat, acid, bile, Zn(2+) and Cu(2+) were assessed. All five selected strains, Lactobacillus salivarius ZJ614 (JN981856), Lactobacillus reuteri ZJ616 (JN981858), L. reuteri ZJ617 (JN981859), L. reuteri ZJ621 (JN981863) and L. reuteri ZJ623 (JN981865), showed inhibition against the two pathogens, E. coli K88 and S. enteritidis 50335. L. reuteri ZJ621 showed higher inhibition ability than the others to S. enteritidis 50335 (P < 0.05). Sodium dodecyl sulfate-Polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that all five strains had abundant bands with molecular weight ranging from 34 to 130 KDa as well as had a common band of approximately 42 KDa. After treatment with 5 M LiCl to remove S-layer protein, the inhibition activities of the lactobacilli against pathogens decreased significantly (P < 0.05). The results showed that higher adhesive ability means higher inhibition activity for lactobacillus against pathogen, in which S-layer proteins plays an important role.
Collapse
Affiliation(s)
- Wenming Zhang
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China
| | | | | | | | | | | |
Collapse
|