1
|
Wang X, Xie Y, Cai H, Duan S, Song X, Wu Y, Fang T, Dong Q, Liu H. Growth and survival characteristics of Salmonella enterica regarding antibiotic resistance phenotypes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
2
|
He X, Yuan F, Lu F, Yin Y, Cao J. Vancomycin-induced biofilm formation by methicillin-resistant Staphylococcus aureus is associated with the secretion of membrane vesicles. Microb Pathog 2017; 110:225-231. [PMID: 28687320 DOI: 10.1016/j.micpath.2017.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
Abstract
Chronic burn wound infections caused by Stapyhylococcus aureus (S. aureus) are largely associated with biofilm formation. However, the mechanism by which S. aureus form biofilm in clinical environments is far less understood. In the present study we addressed the association between biofilm formation and membrane vesicle (MV) secretion of S. aureus during vancomycin treatment. A representative methicillin-resistant S. aureus (MRSA) strain BWMR22 obtained from a chronic burn wound was used in this study. Transmission electron microscope was used to observe the MV secretion. Fourier transform infrared spectroscopy was used to analyze the chemical component of MV. Biofilm formation was assayed under conditions of sub-inhibitory concentrations of vancomycin. Functional potencies of MV in surface adhesion and auto-aggregation were assayed in the presence of additional purified MVs. Biofilm formation by S. aureus BWMR22 was enhanced in the presence of sub-inhibitory concentration of vancomycin. Vancomycin treatment caused an increase in the chemical composition of protein relative to carbohydrates of secreted MVs, a property which was highly associated with bacterial hydrophobicity, surface adhesion, and intercellular aggregation. These findings suggest that MV secretion is correlated with biofilm formation by MRSA especially under clinical conditions with improper vancomycin chemotherapy. This study first demonstrates a potential role of MVs in the biofilm formation by S. aureus, stresses on the importance of avoiding low dose of antibiotic therapy in controlling of S. aureus infections, and provides further information to reveal the mechanisms behind MRSA infections.
Collapse
Affiliation(s)
- Xinlong He
- School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, Jiangsu Province, People's Republic of China; The Third People's Hospital of Wuxi (The Third Affiliated Hospital of Nantong University), Wuxi, 214041, Jiangsu Province, People's Republic of China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225001, Jiangsu Province, People's Republic of China.
| | - Fenglai Yuan
- The Third People's Hospital of Wuxi (The Third Affiliated Hospital of Nantong University), Wuxi, 214041, Jiangsu Province, People's Republic of China
| | - Feng Lu
- School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, Jiangsu Province, People's Republic of China
| | - Yinyan Yin
- School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, Jiangsu Province, People's Republic of China
| | - Jun Cao
- Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, 214064, Jiangsu Province, People's Republic of China; Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
3
|
Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria. Antibiotics (Basel) 2015; 4:379-96. [PMID: 27025630 PMCID: PMC4790292 DOI: 10.3390/antibiotics4030379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022] Open
Abstract
Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps in the medicinally relevant microaerobic and anaerobic pathogens and their implications in the effort to combat drug-resistant infections.
Collapse
|