1
|
Urbaniec J, Sanderson-Smith M, McFadden J, Hai FI, Hingley-Wilson SM. Dysregulated NAD(H) homeostasis associated with ciprofloxacin tolerance in Escherichia coli investigated on a single-cell level with the Peredox [NADH:NAD+] biosensor. Front Microbiol 2023; 14:1191968. [PMID: 37415820 PMCID: PMC10321300 DOI: 10.3389/fmicb.2023.1191968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/11/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Antibiotic persistence (subpopulation tolerance) occurs when a subpopulation of antibiotic sensitive cells survives prolonged exposure to a bactericidal concentration of an antibiotic, and is capable of regrowth once the antibiotic is removed. This phenomenon has been shown to contribute to prolonged treatment duration, infection recurrence, and accelerated development of genetic resistance. Currently, there are no biomarkers which would allow for segregation of these antibiotic-tolerant cells from the bulk population prior to antibiotic exposure, limiting research on this phenomenon to retrograde analyses. However, it has been previously shown that persisters often have a dysregulated intracellular redox homeostasis, warranting its investigation as a potential marker for antibiotic tolerance. Furthermore, it is currently unknown whether another antibiotic tolerant subpopulation - viable but non-culturable cells (VBNCs), are simply persisters with extreme lag phase, or are formed through separate pathways. VBNCs similarly to persisters remain viable following antibiotic exposure, however, are not capable of regrowth in standard conditions. Methods In this article we employed an NADH:NAD+ biosensor (Peredox) to investigate NADH homeostasis of ciprofloxacin-tolerant E. coli cells on a single-cell level. [NADH:NAD+] was used as a proxy for measuring intracellular redox homeostasis and respiration rate. Results and Discussion First, we demonstrated that ciprofloxacin exposure results in a high number of VBNCs, several orders of magnitude higher than persisters. However, we found no correlation in the frequencies of persister and VBNC subpopulations. Ciprofloxacin-tolerant cells (persisters & VBNCs) were actively undergoing respiration, although at a significantly lower rate on average when compared to the bulk population. We also noted significant heterogeneity on a single-cell level within the subpopulations, however were unable to segregate persisters from VBNCs based on these observations alone. Finally, we showed that in the highly-persistent strain of E. coli, E. coli HipQ, ciprofloxacin-tolerant cells have a significantly lower [NADH:NAD+] ratio than tolerant cells of its parental strain, providing further link between disturbed NADH homeostasis and antibiotic tolerance.
Collapse
Affiliation(s)
- Joanna Urbaniec
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Martina Sanderson-Smith
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Johnjoe McFadden
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | - Faisal I. Hai
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, Australia
| | | |
Collapse
|
2
|
Growth fitness, heme uptake and genomic variants in mutants of oxygen-tolerant Lacticaseibacillus casei and Lactiplantibacillus plantarum strains. Microbiol Res 2022; 262:127096. [DOI: 10.1016/j.micres.2022.127096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
|
3
|
Ricciardi A, Storti LV, Giavalisco M, Parente E, Zotta T. The Effect of Respiration, pH, and Citrate Co-Metabolism on the Growth, Metabolite Production and Enzymatic Activities of Leuconostoc mesenteroides subsp. cremoris E30. Foods 2022; 11:foods11040535. [PMID: 35206012 PMCID: PMC8871477 DOI: 10.3390/foods11040535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Leuconostoc mesenteroides includes strains used as starter and/or adjunct cultures for the production of several fermented foods. In this study, the effect of anaerobic and respiratory cultivations, as well as of citrate supplementation and different pH values, was evaluated on growth, biomass, metabolite, and enzymatic activities (pyruvate oxidase, POX; NADH-dependent oxidase, NOX; NADH-dependent peroxidase, NPR) of Leuconostoc mesenteroides subsp. cremoris E30. We compared the respiration-increased growth rate and biomass production of Leuc. mesenteroides E30 to anaerobic cultivation. A supplementation of citrate impaired the growth rate of the respiratory cells. As expected, anaerobic cultures did not consume oxygen, and a similar trend in oxygen uptake was observed in respiratory cultures. The aerobic incubation caused changes in the metabolic pattern, reducing the production of ethanol in favour of acetic acid. Citrate was already exhausted in the exponential phase and did not affect the yields in acetic acid and ethanol. NOX activity increased in the presence of oxygen, while catalase was also detected in the absence of hemin. The absence of H2O2 suggested its degradation by NPR and catalase. Respiratory cultivation provided benefits (increase in growth rate, biomass, and activity in antioxidant enzymes) for Leuc. mesenteroides E30. Therefore, the exploitation of respiratory phenotypes may be useful for the formulation of competitive starter or adjunct cultures.
Collapse
|
4
|
Complex Responses to Hydrogen Peroxide and Hypochlorous Acid by the Probiotic Bacterium Lactobacillus reuteri. mSystems 2019; 4:4/5/e00453-19. [PMID: 31481604 PMCID: PMC6722424 DOI: 10.1128/msystems.00453-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammatory diseases of the gut are associated with increased intestinal oxygen concentrations and high levels of inflammatory oxidants, including hydrogen peroxide (H2O2) and hypochlorous acid (HOCl), which are antimicrobial compounds produced by the innate immune system. This contributes to dysbiotic changes in the gut microbiome, including increased populations of proinflammatory enterobacteria (Escherichia coli and related species) and decreased levels of health-associated anaerobic Firmicutes and Bacteroidetes The pathways for H2O2 and HOCl resistance in E. coli have been well studied, but little is known about how commensal and probiotic bacteria respond to inflammatory oxidants. In this work, we have characterized the transcriptomic response of the anti-inflammatory, gut-colonizing Gram-positive probiotic Lactobacillus reuteri to both H2O2 and HOCl. L. reuteri mounts distinct but overlapping responses to each of these stressors, and both gene expression and survival were strongly affected by the presence or absence of oxygen. Oxidative stress response in L. reuteri required several factors not found in enterobacteria, including the small heat shock protein Lo18, polyphosphate kinase 2, and RsiR, an L. reuteri-specific regulator of anti-inflammatory mechanisms.IMPORTANCE Reactive oxidants, including hydrogen peroxide and hypochlorous acid, are antimicrobial compounds produced by the immune system during inflammation. Little is known, however, about how many important types of bacteria present in the human microbiome respond to these oxidants, especially commensal and other health-associated species. We have now mapped the stress response to both H2O2 and HOCl in the intestinal lactic acid bacterium Lactobacillus reuteri.
Collapse
|
5
|
Ricciardi A, Zotta T, Ianniello RG, Boscaino F, Matera A, Parente E. Effect of Respiratory Growth on the Metabolite Production and Stress Robustness of Lactobacillus casei N87 Cultivated in Cheese Whey Permeate Medium. Front Microbiol 2019; 10:851. [PMID: 31068919 PMCID: PMC6491770 DOI: 10.3389/fmicb.2019.00851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/02/2019] [Indexed: 01/02/2023] Open
Abstract
Cheese whey permeate (WP) is a low-cost feedstock used for the production of biomass and metabolites from several lactic acid bacteria (LAB) strains. In this study, Lactobacillus casei N87 was cultivated in an optimized WP medium (WPM) to evaluate the effect of anaerobic and respiratory conditions on the growth performances (kinetics, biomass yield), consumption of sugars (lactose, galactose, glucose) and citrate, metabolite production [organic acids, volatile organic compounds (VOCs)] and stress survival (oxidative, heat, freezing, freeze-drying). The transcription of genes involved in the main pathways for pyruvate conversion was quantified through Real Time-PCR to elucidate the metabolic shifts due to respiratory state. Cultivation in WPM induced a diauxic growth in both anaerobic and respiratory conditions, and L. casei N87 effectively consumed the lactose and galactose present in WPM. Genomic information suggested that membrane PTS system and tagatose-6-P pathway mediated the metabolism of lactose and galactose in L. casei N87. Respiration did not affect specific growth rate and biomass production, but significantly altered the pyruvate conversion pathways, reducing lactate accumulation and promoting the formation of acetate, acetoin and diacetyl to ensure the redox balance. Ethanol was not produced under either cultivation. Pyruvate oxidase (pox), acetate kinase (ack), α-acetolactate decarboxylase (ald), acetolactate synthase (als) and oxaloacetate decarboxylase (oad) genes were up-regulated under respiration, while L-lactate dehydrogenase (ldh), pyruvate formate lyase (pfl), pyruvate carboxylase (pyc), and phosphate acetyltransferase (pta) were down regulated by oxygen. Transcription analysis was consistent with metabolite production, confirming that POX-ACK and ALS-ALD were the alternative pathways activated under aerobic cultivation. Respiratory growth affected the production of volatile compounds useful for the development of aroma profile in several fermented foods, and promoted the survival of L. casei N87 to oxidative stresses and long-term storage. This study confirmed that the respiration-based technology coupled with cultivation on low-cost medium may be effectively exploited to produce competitive and functional starter and/or adjunct cultures. Our results, additionally, provided further information on the activation and regulation of metabolic pathways in homofermentative LAB grown under respiratory promoting conditions.
Collapse
Affiliation(s)
- Annamaria Ricciardi
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Teresa Zotta
- Istituto di Scienze dell'Alimentazione - Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - Rocco Gerardo Ianniello
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Floriana Boscaino
- Istituto di Scienze dell'Alimentazione - Consiglio Nazionale delle Ricerche (CNR), Avellino, Italy
| | - Attilio Matera
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Eugenio Parente
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
6
|
Siciliano RA, Pannella G, Lippolis R, Ricciardi A, Mazzeo MF, Zotta T. Impact of aerobic and respirative life-style on Lactobacillus casei N87 proteome. Int J Food Microbiol 2019; 298:51-62. [PMID: 30925356 DOI: 10.1016/j.ijfoodmicro.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/10/2019] [Accepted: 03/10/2019] [Indexed: 12/27/2022]
Abstract
Lactic acid bacteria (LAB) are used as starter, adjunct and/or probiotic cultures in fermented foods. Several species are recognized as oxygen-tolerant anaerobes, and aerobic and respiratory cultivations may provide them with physiological and technological benefits. In this light, mechanisms involved in the adaptation to aerobic and respiratory (supplementation with heme and menaquinone) growth conditions of the O2-tolerant strain Lactobacillus casei N87 were investigated by proteomics. In fact, in this bacterial strain, respiration induced an increase in biomass yield and robustness to oxidative, long-term starvation and freeze-drying stresses, while high concentrations of dissolved O2 (dO2 60%) negatively affected its growth and cell survival. Proteomic results well paralleled with physiological and metabolic features and clearly showed that aerobic life-style led to a higher abundance of several proteins involved in carbohydrate metabolism and stress response mechanisms and, concurrently, impaired the biosynthesis of proteins involved in nucleic acid formation and translation processes, thus providing evidence at molecular level of the significant damage to L.casei N87 fitness. On the contrary, the activation of respiratory pathways due to heme and menaquinone supplementation, led to a decreased amount of chaperones and other stress related proteins. These findings confirmed that respiration reduced oxidative stress condition, allowing to positively modulate the central carbohydrate and energy metabolism and improve growth and stress tolerance features. Results of this study could be potentially functional to develop competitive adjunct and probiotic cultures effectively focused on the improvement of quality of fermented foods and the promotion of human health.
Collapse
Affiliation(s)
- Rosa Anna Siciliano
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Gianfranco Pannella
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Rosa Lippolis
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), Bari, Italy
| | - Annamaria Ricciardi
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | | | - Teresa Zotta
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| |
Collapse
|
7
|
Timpano S, Guild BD, Specker EJ, Melanson G, Medeiros PJ, Sproul SLJ, Uniacke J. Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage. FASEB J 2019; 33:5716-5728. [PMID: 30649960 DOI: 10.1096/fj.201802279r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multicellular organisms balance oxygen delivery and toxicity by having oxygen pass through several barriers before cellular delivery. In human cell culture, these physiologic barriers are removed, exposing cells to higher oxygen levels. Human cells cultured in ambient air may appear normal, but this is difficult to assess without a comparison at physiologic oxygen. Here, we examined the effects of culturing human cells throughout the spectrum of oxygen availability on oxidative damage to macromolecules, viability, proliferation, the antioxidant and DNA damage responses, metabolism, and mitochondrial fusion and morphology. We surveyed 4 human cell lines cultured for 3 d at 7 oxygen conditions between 1 and 21% O2. We show that oxygen levels and cellular benefit are not inversely proportional, but the benefit peaks within the physioxic range. Normoxic cells are in a perpetual state of responding to damaged macromolecules and mitochondrial networks relative to physioxic cells, which could compromise an investigation. These data contribute to the concept of an optimal oxygen availability for cell culture in the physioxic range where the oxygen is not too high to reduce oxidative damage, and not too low for efficient oxidative metabolism, but just right: the Goldiloxygen zone.-Timpano, S., Guild, B. D., Specker, E. J., Melanson, G., Medeiros, P. J., Sproul, S. L. J., Uniacke, J. Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage.
Collapse
Affiliation(s)
- Sara Timpano
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Brianna D Guild
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Erin J Specker
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Gaelan Melanson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Philip J Medeiros
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shannon L J Sproul
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - James Uniacke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Zotta T, Ricciardi A, Ianniello RG, Storti LV, Glibota NA, Parente E. Aerobic and respirative growth of heterofermentative lactic acid bacteria: A screening study. Food Microbiol 2018; 76:117-127. [PMID: 30166132 DOI: 10.1016/j.fm.2018.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/17/2018] [Accepted: 02/24/2018] [Indexed: 01/22/2023]
Abstract
Heterofermentative lactic acid bacteria (76 strains) belonging to Lactobacillus, Leuconostoc and Weissella species which are important in fermentation, spoilage or as probiotics were screened in a factorial experiment for their ability to grow, produce catalase and consume oxygen in aerobiosis or in anaerobiosis, with or without supplementation with hemin and/or menaquinone in a medium containing glucose as a carbohydrate source. Aerobiosis improved growth with a few exceptions. The effect of supplementation with heme and/or menaquinone was strain specific and clear evidence of heme-boosted respiration was found in some cases. Heme-catalase was produced by strains of L. brevis, W. minor and Leuc. mesenteroides; some strains of the latter species produced non-heme catalase. Shaken flasks experiments showed that aerobic growth resulted in increased maximum growth rate and in a limited increase in biomass. Heme supplementation during aerobic growth resulted in a further increase in growth rate and final biomass only for a few strains; this was often related to catalase, which was also responsible for increased tolerance of H2O2. In both experiments we found evidence of heme toxicity, especially in anaerobiosis and in absence of menaquinone. Dose response curves for aerobic growth in the presence of combinations of hemin and menaquinone were non-monotonic, with growth stimulation at low doses of heme (<2.5 mg/l) and toxicity at higher doses. Menaquinone at 0.25-8 mg/l increased growth stimulation and partially reduced toxicity.
Collapse
Affiliation(s)
- Teresa Zotta
- Istituto di Scienze dell'Alimentazione-CNR, Avellino, Italy
| | - Annamaria Ricciardi
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy.
| | - Rocco G Ianniello
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Livia V Storti
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Nicolas A Glibota
- Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario (ceiA3), Jaén, 23071, Spain
| | - Eugenio Parente
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
9
|
Reale A, Ianniello RG, Ciocia F, Di Renzo T, Boscaino F, Ricciardi A, Coppola R, Parente E, Zotta T, McSweeney PL. Effect of respirative and catalase-positive Lactobacillus casei adjuncts on the production and quality of Cheddar-type cheese. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Ianniello RG, Zotta T, Matera A, Genovese F, Parente E, Ricciardi A. Investigation of Factors Affecting Aerobic and Respiratory Growth in the Oxygen-Tolerant Strain Lactobacillus casei N87. PLoS One 2016; 11:e0164065. [PMID: 27812097 PMCID: PMC5094797 DOI: 10.1371/journal.pone.0164065] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/19/2016] [Indexed: 11/18/2022] Open
Abstract
Aerobic and respiratory cultivations provide benefits for some lactic acid bacteria (LAB). Growth, metabolites, enzymatic activities (lactate dehydrogenase; pyruvate and NADH oxidases, NADH peroxidase; catalase), antioxidant capability and stress tolerance of Lactobacillus casei N87 were evaluated in anaerobic, aerobic and respiratory (aerobiosis with heme and menaquinone supplementation) batch cultivations with different dissolved oxygen (DO) concentrations. The expression of pox (pyruvate oxidase) and cydABCD operon (cytochrome bd oxidase complex) was quantified by quantitative Real Time polymerase chain reaction. Respiration increased biomass production compared to anaerobiosis and unsupplemented aerobiosis, and altered the central metabolism rerouting pyruvate away from lactate accumulation. All enzymatic activities, except lactate dehydrogenase, were higher in respiratory cultures, while unsupplemented aerobiosis with 60% of DO promoted H2O2 and free radical accumulation. Respiration improved the survival to oxidative and freeze-drying stresses, while significant numbers of dead, damaged and viable but not cultivable cells were found in unsupplemented aerobic cultures (60% DO). Analysis of gene expression suggested that the activation of aerobic and respiratory pathways occurred during the exponential growth phase, and that O2 and hemin induced, respectively, the transcription of pox and cydABCD genes. Respiratory cultivation might be a natural strategy to improve functional and technological properties of L. casei.
Collapse
Affiliation(s)
- Rocco G. Ianniello
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Teresa Zotta
- Istituto di Scienze dell’Alimentazione-CNR, Avellino, Italy
- * E-mail:
| | - Attilio Matera
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Francesco Genovese
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Eugenio Parente
- Dipartimento di Scienze, Università degli Studi della Basilicata, Potenza, Italy
| | - Annamaria Ricciardi
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
11
|
Ianniello R, Zheng J, Zotta T, Ricciardi A, Gänzle M. Biochemical analysis of respiratory metabolism in the heterofermentativeLactobacillus spicheriandLactobacillus reuteri. J Appl Microbiol 2015; 119:763-75. [DOI: 10.1111/jam.12853] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 01/01/2023]
Affiliation(s)
- R.G. Ianniello
- Department of Agricultural, Food and Nutritional Science; University of Alberta; Edmonton AB Canada
- Scuola di Scienze Agrarie; Forestali, Alimentari e Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - J. Zheng
- State Key Laboratory of Agricultural Microbiology; Huazhong Agricultural University; Wuhan Hubei China
| | - T. Zotta
- Istituto di Scienze dell'Alimentazione-CNR; Avellino Italy
| | - A. Ricciardi
- Scuola di Scienze Agrarie; Forestali, Alimentari e Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - M.G. Gänzle
- Department of Agricultural, Food and Nutritional Science; University of Alberta; Edmonton AB Canada
| |
Collapse
|
12
|
Ianniello RG, Ricciardi A, Parente E, Tramutola A, Reale A, Zotta T. Aeration and supplementation with heme and menaquinone affect survival to stresses and antioxidant capability of Lactobacillus casei strains. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Assessment of aerobic and respiratory growth in the Lactobacillus casei group. PLoS One 2014; 9:e99189. [PMID: 24918811 PMCID: PMC4053349 DOI: 10.1371/journal.pone.0099189] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/12/2014] [Indexed: 11/19/2022] Open
Abstract
One hundred eighty four strains belonging to the species Lactobacillus casei, L. paracasei and L. rhamnosus were screened for their ability to grow under aerobic conditions, in media containing heme and menaquinone and/or compounds generating reactive oxygen species (ROS), in order to identify respiratory and oxygen-tolerant phenotypes. Most strains were able to cope with aerobic conditions and for many strains aerobic growth and heme or heme/menaquinone supplementation increased biomass production compared to anaerobic cultivation. Only four L. casei strains showed a catalase-like activity under anaerobic, aerobic and respiratory conditions and were able to survive in presence of H2O2 (1 mM). Almost all L. casei and L. paracasei strains tolerated menadione (0.2 mM) and most tolerated pyrogallol (50 mM), while L. rhamnosus was usually resistant only to the latter compound. This is the first study in which an extensive screening of oxygen and oxidative stress tolerance of members of the L. casei group has been carried out. Results allowed the selection of strains showing the typical traits of aerobic and respiratory metabolism (increased pH and biomass under aerobic or respiratory conditions) and unique oxidative stress response properties. Aerobic growth and respiration may confer technological and physiological advantages in the L. casei group and oxygen-tolerant phenotypes could be exploited in several food industry applications.
Collapse
|