1
|
Zhao Z, Liu Y, Dong X, Jiang Q, Wang J, Yang X, Chen J, Lei Z. Unveiling the role of ferrous ion in driving microalgae granulation from salt-tolerant strains for mariculture wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171315. [PMID: 38431177 DOI: 10.1016/j.scitotenv.2024.171315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Development of microalgal-bacterial granular sludge (MBGS) from saline-adapted microalgae is a promising approach for efficient mariculture wastewater treatment, whereas the elusive mechanisms governing granulation have impeded its widespread adoption. In this study, spherical and regular MBGS were successfully developed from mixed culture of pure Spirulina platensis and Chlorella sp. GY-H4 at 10 mg/L Fe2+ concentration. The addition of Fe2+ was proven to induce the formation of Fe-precipitates which served as nucleation sites for microbial attachment and granulation initiation. Additionally, Fe2+ increased the prevalence of exopolysaccharide-producing cyanobacteria, i.e. Synechocystis and Leptolyngbya, facilitating microbial cell adhesion. Furthermore, it stimulated the secretion of extracellular proteins (particularly tryptophan and aromatic proteins), which acted as structural backbone for the development of spherical granule form microalgal flocs. Lastly, it fostered the accumulation of exogenous heterotrophic functional genera, resulting in the efficient removal of DOC (98 %), PO43--P (98 %) and NH4+-N (87 %). Nevertheless, inadequate Fe2+ hindered microalgal floc transformation into granules, excessive Fe2+ expanded the anaerobic zone within the granules, almost halved protein content in the TB-EPS, and inhibited the functional genes expression, ultimately leading to an irregular granular morphology and diminished nutrient removal. This research provides valuable insights into the mechanisms by which Fe2+ promotes the granulation of salt-tolerant microalgae, offering guidance for the establishment and stable operation of MBGS systems in mariculture wastewater treatment.
Collapse
Affiliation(s)
- Ziwen Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510345, China
| | - Yuqi Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510345, China
| | - Xiaochuan Dong
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Qianrong Jiang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510345, China
| | - Jixiang Wang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Xiaojing Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jianyu Chen
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510345, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
2
|
Shayesteh H, Laird DW, Hughes LJ, Nematollahi MA, Kakhki AM, Moheimani NR. Co-Producing Phycocyanin and Bioplastic in Arthrospira platensis Using Carbon-Rich Wastewater. BIOTECH 2023; 12:49. [PMID: 37489483 PMCID: PMC10366904 DOI: 10.3390/biotech12030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/26/2023] Open
Abstract
Microalgae can treat waste streams containing elevated levels of organic carbon and nitrogen. This process can be economically attractive if high value products are created simultaneously from the relatively low-cost waste stream. Co-production of two high value microalgal products, phycocyanin and polyhydroxybutyrate (PHB), was investigated using non-axenic Arthrospira platensis MUR126 and supplemental organic carbon (acetate, oxalate, glycerol and combinations). All supplemented cultures had higher biomass yield (g/L) than photoautotrophic control. All cultures produced PHB (3.6-7.8% w/w), except the control and those fed oxalate. Supplemented cultures showed a two to three-fold increase in phycocyanin content over the eight-day cultivation. Results indicate co-production of phycocyanin and PHB is possible in A. platensis, using mixed-waste organic carbon. However, supplementation resulted in growth of extremophile bacteria, particularly in cultures fed glycerol, and this had a negative impact on culture health. Refinement of the carbon dosing rate is required to minimise impacts of native bacterial contamination.
Collapse
Affiliation(s)
- Hajar Shayesteh
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch 6150, Australia
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48978, Iran
| | - Damian W Laird
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch 6150, Australia
| | - Leonie J Hughes
- School of Mathematics, Statistics, Chemistry and Physics, College of Science, Technology, Engineering, and Mathematics, Murdoch University, Murdoch 6150, Australia
| | - Mohammad A Nematollahi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj Campus, Tehran 77871-31587, Iran
| | - Amin Mirshamsi Kakhki
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48978, Iran
| | - Navid R Moheimani
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch 6150, Australia
| |
Collapse
|
3
|
Witthohn M, Strieth D, Kollmen J, Schwarz A, Ulber R, Muffler K. Process Technologies of Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [PMID: 36571615 DOI: 10.1007/10_2022_214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although the handling and exploitation of cyanobacteria is associated with some challenges, these phototrophic bacteria offer great opportunities for innovative biotechnological processes. This chapter covers versatile aspects of working with cyanobacteria, starting with up-to-date in silico and in vitro screening methods for bioactive substances. Subsequently, common conservation techniques and vitality/viability estimation methods are compared and supplemented by own data regarding the non-invasive vitality evaluation via pulse amplitude modulated fluorometry. Moreover, novel findings about the influence the state of the pre-cultures have on main cultures are presented. The following sub-chapters deal with different photobioreactor-designs, with special regard to biofilm photobioreactors, as well as with heterotrophic and mixotrophic cultivation modes. The latter topic provides information from literature on successfully enhanced cyanobacterial production processes, augmented by own data.
Collapse
Affiliation(s)
- Marco Witthohn
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| | - Dorina Strieth
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jonas Kollmen
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Anna Schwarz
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| | - Roland Ulber
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany.
| | - Kai Muffler
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| |
Collapse
|
4
|
Influence of heterotrophic and mixotrophic cultivation on growth behaviour of terrestrial cyanobacteria. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Li X, Li W, Zhai J, Wei H, Wang Q. Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation. BIORESOURCE TECHNOLOGY 2019; 273:368-376. [PMID: 30453251 DOI: 10.1016/j.biortech.2018.11.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
To enhance microalgal growth and optimize ammonium utilization, the effect of ammonium on microalgal growth, biochemical composition and photosynthetic performance were investigated by mixotrophic cultivation of microalga Spirulina platensis comparing with autotrophic cultivation. The results indicated that elevated ammonium significantly affected the microalgal growth, but the microalga in mixotrophic cultivation showed better growth and stronger tolerance to higher ammonium. The microalgal proteins were increased by increasing nitrogen concentration. The synthesis of microalgal carbohydrates was inhibited by higher ammonium, especially in mixotrophic cultivation. The addition of ammonium decreased the microalgal lipids in autotrophic cultivation but increased microalgal lipids in mixotrophic cultivation. Ammonium negatively affected the microalgal photosynthetic performance. The inhibition was intensified by elevated ammonium, inducing stronger photosystem protection mechanism, particularly in mixotrophic cultivation. The rate of ammonium inhibition to the microalgal photosystem was quick in the early stage by decreasing electron transport rate of PS II.
Collapse
Affiliation(s)
- Xiaoting Li
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China
| | - Wei Li
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China.
| | - Jun Zhai
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China.
| | - Haoxuan Wei
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China
| | - Quanfeng Wang
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China
| |
Collapse
|
6
|
Li X, Li W, Zhai J, Wei H. Effect of nitrogen limitation on biochemical composition and photosynthetic performance for fed-batch mixotrophic cultivation of microalga Spirulina platensis. BIORESOURCE TECHNOLOGY 2018; 263:555-561. [PMID: 29778794 DOI: 10.1016/j.biortech.2018.05.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 05/06/2023]
Abstract
In this study, the effect of nitrogen limitation on microalgal growth, biochemical composition and photosynthetic performance was investigated in fed-batch mixotrophic cultivation of microalga Spirulina platensis, compared with that in autotrophic cultivation. The microalgal biomass productivity was greatly enhanced by mixotrophic cultivation. With nitrogen limitation, the mixotrophic culture accelerated the degradation of microalgal pigments and proteins to supply intracellular nitrogen for maintaining higher biomass productivity, simultaneously accumulating more carbohydrates. The mixotrophic cultivation amplified the adverse effect of nitrogen limitation on the microalgal photosynthetic performance in comparison with autotrophic cultivation. This fed-batch mixotrophic cultivation is an effective strategy for enhancing biomass productivity and total carbohydrates yield under nitrogen limited conditions.
Collapse
Affiliation(s)
- Xiaoting Li
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China
| | - Wei Li
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China
| | - Jun Zhai
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China.
| | - Haoxuan Wei
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China
| |
Collapse
|
7
|
Poddar N, Sen R, Martin GJ. Glycerol and nitrate utilisation by marine microalgae Nannochloropsis salina and Chlorella sp. and associated bacteria during mixotrophic and heterotrophic growth. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|