1
|
A multi-step nitrifying microbial enrichment to remove ammonia and nitrite in brackish aquaculture systems. Biodegradation 2022; 33:373-388. [PMID: 35610494 DOI: 10.1007/s10532-022-09988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
One of the most important advancements in harnessing the biological nitrification in the field is enrichment solution of nitrifying microbial consortia. In the current study, we developed an improved multi-step enrichment to amplify a targeted microbial consortium from a sediment sample collected in tropical mangrove, Vietnam. The results showed that it took 122 culturing days with five unique continuous enrichment steps, the microbial consortium consumed total 5665 mgN L-1. Relative substrate removal rate increased rapidly from 0.114 mgN L-1 h-1 at the end of the first-step enrichment up to 3.58 mgN L-1 h-1 at the end of the fifth-step enrichment. High-throughput sequencing revealed that Nitrospirae, Proteobacteria and Bacteroidetes were the dominant taxa at the phylum level while Nitrospira, Marinobacter, Denitromonas and Nitrosomonas were the dominant taxa at the genus level in the enriched consortia. A pilot-scale experiment for shrimp cultivation of L. vannamei in 84 day-period proved the efficiency of Total ammonium nitrogen and nitrite removal in the consortium-activated treatment was much higher than the control.
Collapse
|
3
|
Chang BV, Chang YT, Chao WL, Yeh SL, Kuo DL, Yang CW. Effects of sulfamethoxazole and sulfamethoxazole-degrading bacteria on water quality and microbial communities in milkfish ponds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:305-316. [PMID: 31158659 DOI: 10.1016/j.envpol.2019.05.136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Intensive farming practices are typically used for aquaculture. To prevent disease outbreaks, antibiotics are often used to reduce pathogenic bacteria in aquaculture animals. However, the effects of antibiotics on water quality and microbial communities in euryhaline fish culture ponds are largely unknown. The aim of this study was to investigate the interactions between sulfamethoxazole (SMX), water quality and microbial communities in milkfish (Chanos chanos) culture ponds. The results of small-scale milkfish pond experiments indicated that the addition of SMX decreased the abundance of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and photosynthetic bacteria. Consequently, the levels of ammonia and total phosphorus in the fish pond water increased, causing algal and cyanobacterial blooms to occur. In contrast, the addition of the SMX-degrading bacterial strains A12 and L effectively degraded SMX and reduced the levels of ammonia and total phosphorus in fish pond water. Furthermore, the abundances of AOB, NOB and photosynthetic bacteria were restored, and algal and cyanobacterial blooms were inhibited. This study demonstrate the influences of SMX on water quality and microbial community composition in milkfish culture ponds. Moreover, the use of the bacterial strains A12 and L as dual function (bioaugmentation and water quality maintenance) beneficial bacteria was shown to provide an effective approach for the bioremediation of SMX-contaminated euryhaline milkfish culture ponds.
Collapse
Affiliation(s)
- Bea-Ven Chang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Yi-Tang Chang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Wei-Liang Chao
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Shinn-Lih Yeh
- Mariculture Research Center, Council of Agriculture, Tainan City, Taiwan
| | - Dong-Lin Kuo
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Chu-Wen Yang
- Department of Microbiology, Soochow University, Taipei, Taiwan.
| |
Collapse
|
4
|
Effect of Immobilized Nitrifying Bacterial Consortium on Ammonia Biodegradation in Aquaculture Pond and Enhanced Growth of Labeo rohita: An In Vitro and In Vivo Studies. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-04073-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Wang J, Zhou W, Chen H, Zhan J, He C, Wang Q. Ammonium Nitrogen Tolerant Chlorella Strain Screening and Its Damaging Effects on Photosynthesis. Front Microbiol 2019; 9:3250. [PMID: 30666245 PMCID: PMC6330332 DOI: 10.3389/fmicb.2018.03250] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/14/2018] [Indexed: 11/13/2022] Open
Abstract
Nitrogen is an essential nutrient element. Ammonium nitrogen, one of the most common nitrogen sources, is found in various habitats, especially wastewater. However, excessive amounts of ammonium nitrogen can be toxic to phytoplankton, higher plants, fish, and other animals, and microorganisms. In this study, we explored the tolerance of green algae to ammonium nitrogen using 10 Chlorella strains. High concentrations of ammonium nitrogen directly inhibited the growth of Chlorella, but the degree of inhibition varied by strain. With the EC50 of 1.6 and 0.4 g L-1, FACHB-1563 and FACHB-1216, respectively had the highest and lowest tolerance to ammonium nitrogen among all strains tested, suggesting that FACHB-1563 could potentially be used to remove excess ammonium nitrogen from wastewater in bioremediation efforts. Two strains with the highest and lowest tolerance to ammonium nitrogen were selected to further explore the inhibitory effect of ammonium nitrogen on Chlorella. Analysis of chlorophyll fluorescence, oxygen evolution, and photosynthesis proteins via immunoblot showed that photosystem II (PSII) had been damaged when exposed to high levels of ammonium nitrogen, with the oxygen-evolving complex as the primary site, and electron transport fromQ A - to QB was subsequently inhibited by this treatment. A working model of ammonium nitrogen competition between N assimilation and PSII damage is proposed to elucidate that the assimilation rate of ammonium nitrogen by algae strains determines the tolerance of cells to ammonium nitrogen toxicity.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wei Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Okai M, Suwa C, Nagaoka S, Obara N, Mitsuya D, Kurihara A, Ishida M, Urano N. Neutralization of acidic drainage by Cryptococcus sp. T1 immobilized in alginate beads. Biosci Biotechnol Biochem 2017; 81:2216-2224. [PMID: 28914179 DOI: 10.1080/09168451.2017.1373586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We isolated Cryptococcus sp. T1 from Lake Tazawa's acidic water in Japan. Cryptococcus sp. T1 neutralized an acidic casamino acid solution (pH 3.0) and released ammonia from the casamino acids to aid the neutralization. The neutralization volume was estimated to be approximately 0.4 mL/h. The casamino acids' amino acids decreased (1.24→0.15 mM); ammonia increased (0.22→0.99 mM). We neutralized acidic drainage water (1 L) from a Tamagawa River neutralization plant, which was run through the column with the T1-immobilized alginate beads at a flow rate of 0.5 mL/min, and observed that the viscosity, particle size and amounts of the alginate beads affected the acidic drainage neutralization with an increase of the pH value from 5.26 to 6.61 in the last fraction. An increase in the Al concentration decreased Cryptococcus sp. T1's neutralization ability. After 48 h, the pH of acidic water with 50 mg/L Al was apparently lower than that without Al. Almost no pH increase was observed at 75 mg/L.
Collapse
Affiliation(s)
- Masahiko Okai
- a Department of Ocean Sciences , Tokyo University of Marine Science and Technology , Tokyo , Japan
| | - Chisato Suwa
- a Department of Ocean Sciences , Tokyo University of Marine Science and Technology , Tokyo , Japan
| | - Shintaro Nagaoka
- a Department of Ocean Sciences , Tokyo University of Marine Science and Technology , Tokyo , Japan
| | - Nobuo Obara
- a Department of Ocean Sciences , Tokyo University of Marine Science and Technology , Tokyo , Japan
| | - Daisuke Mitsuya
- a Department of Ocean Sciences , Tokyo University of Marine Science and Technology , Tokyo , Japan
| | - Ayako Kurihara
- b Department of Marine Biosciences , Tokyo University of Marine Science and Technology , Tokyo , Japan
| | - Masami Ishida
- a Department of Ocean Sciences , Tokyo University of Marine Science and Technology , Tokyo , Japan
| | - Naoto Urano
- a Department of Ocean Sciences , Tokyo University of Marine Science and Technology , Tokyo , Japan
| |
Collapse
|