1
|
Lu TH, Chen CY, Wang WM, Liao CM. One Health-based management for sustainably mitigating tetracycline-resistant Aeromonas hydrophila-induced health risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123943. [PMID: 38599271 DOI: 10.1016/j.envpol.2024.123943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Aeromonas hydrophila has ability to spread tetracycline resistance (tetR) under stresses of oxytetracycline (OTC), one of the most important antibiotics in aquaculture industry. Even though environmental reservoir of Aeromonas allows it to be at interfaces across One Health components, a robust modelling framework for rigorously assessing health risks is currently lacking. We proposed a One Health-based approach and leveraged recent advances in quantitative microbial risk assessment appraised by available dataset to interpret interactions at the human-animal-environment interfaces in various exposure scenarios. The dose-response models were constructed considering the effects on mortality for aquaculture species and tetR genes transfer for humans. A scenario-specific risk assessment on pond species-associated A. hydrophila infection and human gut-associated tetR genes transfer was examined. Risk-based control strategies were involved to test their effectiveness. We showed that farmed shrimp exposed to tetracycline-resistant A. hydrophila in OTC-contaminated water experienced higher infection risk (relative risk: 1.25-1.34). The tetR genes transfer risk for farmers in shrimp ponds (∼2 × 10-4) and swimmers in coastal areas (∼4 × 10-6) during autumn exceeded acceptable risk (10-6). This cautionary finding underscores the importance of accounting for monitoring, assessing, and mitigating occupational health hazards among workers in shrimp farming sectors within future One Health-based strategies for managing water infection risks. We recommend that OTC emission rate together with A. hydrophila concentration should be reduced by up to 70-99% to protect human, farmed shrimp, and environmental health. Our predictive framework can be adopted for other systems and be used as a "risk detector" for assessing tetR-related health risks that invoke potential risk management on addressing sustainable mitigation on offsetting residual OTC emission and tetR genes spread in a species-human-environmental health system.
Collapse
Affiliation(s)
- Tien-Hsuan Lu
- Department of Science Education and Application, National Taichung University of Education, Taichung, 403514, Taiwan, ROC.
| | - Chi-Yun Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA
| | - Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106319, Taiwan, ROC
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106319, Taiwan, ROC
| |
Collapse
|
2
|
Ji Y, Zhang P, Zhou S, Gao P, Wang B, Jiang J. Widespread but Poorly Understood Bacteria: Candidate Phyla Radiation. Microorganisms 2022; 10:2232. [PMID: 36422302 PMCID: PMC9698310 DOI: 10.3390/microorganisms10112232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 08/15/2023] Open
Abstract
Candidate Phyla Radiation (CPR) bacteria is a bacterial division composed mainly of candidate phyla bacteria with ultra-small cell sizes, streamlined genomes, and limited metabolic capacity, which are generally considered to survive in a parasitic or symbiotic manner. Despite their wide distribution and rich diversity, CPR bacteria have received little attention until recent years, and are therefore poorly understood. This review systematically summarizes the history of CPR research, the parasitic/symbiotic lifestyle, and the ecological distribution and unique metabolic features of CPR bacteria, hoping to provide guidance for future ecological and physiological research on CPR bacteria.
Collapse
Affiliation(s)
| | | | | | | | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| |
Collapse
|
3
|
Sun G, Dong Y, Sun C, Yao H, Lin Z. Vital Role of Glutamate Dehydrogenase Gene in Ammonia Detoxification and the Association Between its SNPs and Ammonia Tolerance in Sinonovacula constricta. Front Physiol 2021; 12:664804. [PMID: 34025453 PMCID: PMC8131826 DOI: 10.3389/fphys.2021.664804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence has revealed accumulated ammonia will cause adverse effects on the growth, reproduction, and survival of aquatic animals. As a marine benthic mollusk, the razor clam Sinonovacula constricta shows better growth and survival under high ammonia nitrogen environment. However, little is known about its adaptation mechanisms to high ammonia stress in an integrated mariculture system. In this study, we analyzed the association between the polymorphism of glutamate dehydrogenase gene (GDH), a key gene involved in ammonia nitrogen detoxification, and ammonia tolerance. The results showed that 26 and 22 single-nucleotide polymorphisms (SNPs) of GDH in S. constricta (denoted as Sc-GDH) were identified from two geographical populations, respectively. Among them, two SNPs (c.323T > C and c.620C > T) exhibited a significant and strong association with ammonia tolerance, suggesting that Sc-GDH gene could serve as a potential genetic marker for molecular marker–assisted selection to increase survival rate and production of S. constricta. To observe the histological morphology and explore the histocellular localization of Sc-GDH, by paraffin section and hematoxylin–eosin staining, the gills were divided into gill filament (contains columnar and flattened cells) and gill cilia, whereas hepatopancreas was made up of individual hepatocytes. The results of immunohistochemistry indicated that the columnar cells of gill filaments and the endothelial cells of hepatocytes were the major sites for Sc-GDH secretion. Under ammonia stress (180 mg/L), the expression levels of Sc-GDH were extremely significantly downregulated at 24, 48, 72, and 96 h (P < 0.01) after RNA interference. Thus, we can speculate that Sc-GDH gene may play an important role in the defense process against ammonia stress. Overall, these findings laid a foundation for further research on the adaptive mechanisms to ammonia–nitrogen tolerance for S. constricta.
Collapse
Affiliation(s)
- Gaigai Sun
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Yinghui Dong
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, China.,Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Changsen Sun
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, China
| | - Hanhan Yao
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, China.,Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
4
|
Ahasan MS, Waltzek TB, Owens L, Ariel E. Characterisation and comparison of the mucosa-associated bacterial communities across the gastrointestinal tract of stranded green turtles, Chelonia mydas. AIMS Microbiol 2020; 6:361-378. [PMID: 33364533 PMCID: PMC7755585 DOI: 10.3934/microbiol.2020022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/08/2020] [Indexed: 01/02/2023] Open
Abstract
Chelonia mydas are primarily herbivorous long-distance migratory sea turtles that contribute to marine ecosystems. Extensive research has been conducted to restore the populations of green turtles. Little is known about their gut microbiota which plays a vital role in their health. We investigated the mucosa-associated bacterial communities across the gastrointestinal (GI) tract of a total four (3, juvenile and 1, adult) stranded green turtles. Samples taken from four GI regions including oesophagus, stomach, small intestine and large intestine were analysed by high-throughput sequencing targeting hypervariable V1-V3 regions of the bacterial 16S rRNA gene. Bacterial diversity and richness decreased longitudinally along the GI tract from oesophagus to the small intestine of stranded turtles. The large intestine showed a higher bacterial diversity and richness compared to small intestine. The bacterial community of green turtles' GI tract was largely dominated by Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria. Aerobic and facultative anaerobic bacteria prevailed primarily in the oesophagus while anaerobes (Lachnospiraceae, Peptostreptococcaceae and Ruminococcaceae) constituted the bulk of large intestinal microbiota. Firmicutes dominated the GI tract except within the small intestine where Proteobacteria prevailed. At the OTU level, six percent of the total OTUs (>1% relative abundance) were common in all GI regions. This is a comprehensive characterisation of bacterial microbiota across the GI tract in green turtles which will provide a reference for future studies on turtle gut microbiome and their metabolism to improve their health and nutrition during rehabilitation.
Collapse
Affiliation(s)
- Mohammad Shamim Ahasan
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, Qld, Australia.,Faculty of Veterinary and Animal Sciences, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Rangpur, Bangladesh
| | - Thomas B Waltzek
- College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Leigh Owens
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, Qld, Australia
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, Qld, Australia
| |
Collapse
|
5
|
Gao T, Cui B, Kong X, Bai Z, Zhuang X, Qian Z. Investigation of bacterial diversity and pathogen abundances in gibel carp (Carassius auratus gibelio) ponds during a cyprinid herpesvirus 2 outbreak. Microbiologyopen 2019; 8:e907. [PMID: 31432609 PMCID: PMC6813457 DOI: 10.1002/mbo3.907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 12/28/2022] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) infection is detrimental to gibel carp health and may result in severe economic loss in freshwater aquaculture. However, information regarding the interaction of this pathogen with the aquatic environment is scarce. In this study, quantitative polymerase chain reaction (qPCR) and high-throughput sequencing were used to determine the abundances of pathogens and bacterial community compositions in two aquaculture ponds in Jiangsu Province, China. The results indicate that the concentrations of six selected pathogens were higher in the water than in the sediment and that these concentrations peaked during disease outbreak. In total, 8,326 and 18,244 operational taxonomic units were identified from water and sediment samples, respectively. The dominant phyla were Proteobacteria, Actinobacteria, Cyanobacteria, Bacteroidetes, and Chlorobi in water samples and Proteobacteria, Firmicutes, Actinobacteria, Chloroflexi, and Bacteroidetes in sediment samples. Bacterial communities were similar at the phylum level in different ponds, although significant differences were observed at the genus level. In addition, bacterial diversity was associated with environmental factors (temperature, chemical oxygen demand, NO2- -N, NO3- -N, and NH4+ -N) in the pond where the outbreak occurred. Additionally, CyHV-2 abundance was positively correlated with dissolved oxygen levels and Aeromonas spp. abundance in pond water (p < .01). This study provides comprehensive insight into the mechanisms of interaction between potential pathogens and the freshwater environment of aquaculture ponds during CyHV-2 disease outbreaks. Furthermore, the results from this study can contribute to improvement of the aquatic environment and establishment of disease prevention and control measures.
Collapse
Affiliation(s)
- Tianming Gao
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Bingjian Cui
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
- Farmland Irrigation Research InstituteChinese Academy of Agricultural SciencesXinxiangChina
| | - Xiao Kong
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Zhihui Bai
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Xuliang Zhuang
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Zhi Qian
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Peng FJ, Kiggen F, Pan CG, Bracewell SA, Ying GG, Salvito D, Selck H, Van den Brink PJ. Fate and effects of sediment-associated polycyclic musk HHCB in subtropical freshwater microcosms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:902-910. [PMID: 30597790 DOI: 10.1016/j.ecoenv.2018.11.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Galaxolide (HHCB) is used as a fragrance ingredient in household and personal care products, and has been ubiquitously detected in the environment. Here we investigated the fate of HHCB in subtropical freshwater microcosms, and evaluated effects of sediment-associated HHCB on a biological community consisting of algae, Daphnia, benthic macroinvertebrates and bacteria. The concentrations of sediment-associated HHCB did not change significantly during a 28 days exposure period, but HHCB accumulated in worms with biota-sediment accumulation-factor (BSAF) values in the range of 0.29-0.66 for Branchiura sowerbyi and 0.94-2.11 for Limnodrilus hoffmeisteri. There was no significant effects of HHCB (30 μg/g dry weight (dw) sediment) on chlorophyll-a content, sediment bacterial community composition, and survival and growth of benthic macroinvertebrates. However, the presence of benthic macroinvertebrates altered the sediment bacterial community structure relative to microcosms without introduced organisms. The findings of this study suggest that a single high-dose of HHCB, over 28 days, at environmentally relevant concentrations would not impose direct toxicological risks to aquatic organisms such as benthic macroinvertebrates.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Fionne Kiggen
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Chang-Gui Pan
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Sally A Bracewell
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Guang-Guo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Daniel Salvito
- Research Institute for Fragrance Materials, 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - Henriette Selck
- Department of Environmental, Social and Spatial Change, Roskilde University, Universitetsvej 1, Denmark
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
7
|
Md Zoqratt MZH, Eng WWH, Thai BT, Austin CM, Gan HM. Microbiome analysis of Pacific white shrimp gut and rearing water from Malaysia and Vietnam: implications for aquaculture research and management. PeerJ 2018; 6:e5826. [PMID: 30397546 PMCID: PMC6214229 DOI: 10.7717/peerj.5826] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/25/2018] [Indexed: 01/27/2023] Open
Abstract
Aquaculture production of the Pacific white shrimp is the largest in the world for crustacean species. Crucial to the sustainable global production of this important seafood species is a fundamental understanding of the shrimp gut microbiota and its relationship to the microbial ecology of shrimp pond. This is especially true, given the recently recognized role of beneficial microbes in promoting shrimp nutrient intake and in conferring resistance against pathogens. Unfortunately, aquaculture-related microbiome studies are scarce in Southeast Asia countries despite the severe impact of early mortality syndrome outbreaks on shrimp production in the region. In this study, we employed the 16S rRNA amplicon (V3–V4 region) sequencing and amplicon sequence variants (ASV) method to investigate the microbial diversity of shrimp guts and pond water samples collected from aquaculture farms located in Malaysia and Vietnam. Substantial differences in the pond microbiota were observed between countries with the presence and absence of several taxa extending to the family level. Microbial diversity of the shrimp gut was found to be generally lower than that of the pond environments with a few ubiquitous genera representing a majority of the shrimp gut microbial diversity such as Vibrio and Photobacterium, indicating host-specific selection of microbial species. Given the high sequence conservation of the 16S rRNA gene, we assessed its veracity at distinguishing Vibrio species based on nucleotide alignment against type strain reference sequences and demonstrated the utility of ASV approach in uncovering a wider diversity of Vibrio species compared to the conventional OTU clustering approach.
Collapse
Affiliation(s)
- Muhammad Zarul Hanifah Md Zoqratt
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia.,Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Wilhelm Wei Han Eng
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia.,Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Binh Thanh Thai
- Fisheries and Technical, Economical College, Dinh Bang, Tu Son, Vietnam
| | - Christopher M Austin
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia.,Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Han Ming Gan
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia.,Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
8
|
Kerkhof LJ, Dillon KP, Häggblom MM, McGuinness LR. Profiling bacterial communities by MinION sequencing of ribosomal operons. MICROBIOME 2017; 5:116. [PMID: 28911333 PMCID: PMC5599880 DOI: 10.1186/s40168-017-0336-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/30/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND An approach utilizing the long-read capability of the Oxford Nanopore MinION to rapidly sequence bacterial ribosomal operons of complex natural communities was developed. Microbial fingerprinting employs domain-specific forward primers (16S rRNA subunit), reverse primers (23S rRNA subunit), and a high-fidelity Taq polymerase with proofreading capabilities. Amplicons contained both ribosomal subunits for broad-based phylogenetic assignment (~ 3900 bp of sequence), plus the intergenic spacer (ITS) region (~ 300 bp) for potential strain-specific identification. RESULTS To test the approach, bacterial rRNA operons (~ 4200 bp) were amplified from six DNA samples employing a mixture of farm soil and bioreactor DNA in known concentrations. Each DNA sample mixture was barcoded, sequenced in quadruplicate (n = 24), on two separate 6-h runs using the MinION system (R7.3 flow cell; MAP005 and 006 chemistry). From nearly 90,000 MinION reads, roughly 33,000 forward and reverse sequences were obtained. This yielded over 10,000 2D sequences which were analyzed using a simplified data analysis pipeline based on NCBI Blast and assembly with Geneious software. The method could detect over 1000 operational taxonomic units in the sample sets in a quantitative manner. Global sequence coverage for the various rRNA operons ranged from 1 to 1951x. An iterative assembly scheme was developed to reconstruct those rRNA operons with > 35x coverage from a set of 30 operational taxonomic units (OTUs) among the Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, and Gemmatimonadetes. Phylogenetic analysis of the 16S rRNA and 23S rRNA genes from each operon demonstrated similar tree topologies with species/strain-level resolution. CONCLUSIONS This sequencing method represents a cost-effective way to profile microbial communities. Because the MinION is small, portable, and runs on a laptop, the possibility of microbiota characterization in the field or on robotic platforms becomes realistic.
Collapse
Affiliation(s)
- Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd, New Brunswick, NJ, 08901-8521, USA.
| | - Kevin P Dillon
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Lora R McGuinness
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd, New Brunswick, NJ, 08901-8521, USA
| |
Collapse
|
9
|
Troussellier M, Escalas A, Bouvier T, Mouillot D. Sustaining Rare Marine Microorganisms: Macroorganisms As Repositories and Dispersal Agents of Microbial Diversity. Front Microbiol 2017; 8:947. [PMID: 28611749 PMCID: PMC5447324 DOI: 10.3389/fmicb.2017.00947] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/11/2017] [Indexed: 12/14/2022] Open
Abstract
Recent analyses revealed that most of the biodiversity observed in marine microbial communities is represented by organisms with low abundance but, nonetheless essential for ecosystem dynamics and processes across both temporal and spatial scales. Surprisingly, few studies have considered the effect of macroorganism–microbe interactions on the ecology and distribution dynamics of rare microbial taxa. In this review, we synthesize several lines of evidence that these relationships cannot be neglected any longer. First, we provide empirical support that the microbiota of macroorganisms represents a significant part of marine bacterial biodiversity and that host-microbe interactions benefit to certain microbial populations which are part of the rare biosphere (i.e., opportunistic copiotrophic organisms). Second, we reveal the major role that macroorganisms may have on the dispersal and the geographic distribution of microbes. Third, we introduce an innovative and integrated view of the interactions between microbes and macroorganisms, namely sustaining the rares, which suggests that macroorganisms favor the maintenance of marine microbial diversity and are involved in the regulation of its richness and dynamics. Finally, we show how this hypothesis complements existing theories in microbial ecology and offers new perspectives about the importance of macroorganisms for the microbial biosphere, particularly the rare members.
Collapse
Affiliation(s)
- Marc Troussellier
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France
| | - Arthur Escalas
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, NormanOK, United States
| | - Thierry Bouvier
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France
| | - David Mouillot
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, TownsvilleQLD, Australia
| |
Collapse
|
10
|
Bacterial abundance and diversity in pond water supplied with different feeds. Sci Rep 2016; 6:35232. [PMID: 27759010 PMCID: PMC5069485 DOI: 10.1038/srep35232] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/22/2016] [Indexed: 01/17/2023] Open
Abstract
The abundance and diversity of bacteria in two types of ponds were investigated by quantitative PCR and Illumina MiSeq sequencing. The results revealed that the abundance of bacterial 16S rRNA genes in D ponds (with grass carp fed sudan grass) was significantly lower than that in E ponds (with grass carp fed commercial feed). The microbial communities were dominated by Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria in both E and D ponds, while the abundance of some genera was significantly different between the two types of ponds. Specifically, some potential pathogens such as Acinetobacter and Aeromonas were found to be significantly decreased, while some probiotics such as Comamonadaceae unclassified and Bacillales unclassified were significantly increased in D ponds. In addition, water quality of D ponds was better than that of E ponds. Temperature, dissolved oxygen and nutrients had significant influence on bacterial communities. The differences in bacterial community compositions between the two types of ponds could be partially explained by the different water conditions.
Collapse
|