1
|
Feng G, Deng M, Li R, Hou G, Ouyang Q, Jiang X, Liu X, Tang H, Chen F, Pu S, Wan D, Yin Y. Gastrointestinal microbiota and metabolites responses to dietary cereal grains in an adult pig model. Front Microbiol 2024; 15:1442077. [PMID: 39355428 PMCID: PMC11442370 DOI: 10.3389/fmicb.2024.1442077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Corn (C), wheat (W), and paddy rice (PR) are important energy sources and are commonly used in feed production for swine. This study mainly focuses on the variation and regularities of microbiota and metabolites in the gastrointestinal tract (GIT) of pigs in response to C, W, and PR. A total of 18 pigs were allotted into three dietary groups with six replicated pigs and received diets containing C, W, or PR as the sole energy source, respectively. The results showed that digestive parts significantly affected the diversity of microbial communities. Cereal grain sources significantly influenced the β-diversity of microbial communities in the colon and rectum. Campylobacterota and Proteobacteria are mainly distributed in the duodenum, Lactobacillus in the jejunum, and Bacteroidota in the colon and rectum. The W diet increased the Bacteroidota, Spirochaetota, and Prevotellaceae_NK3B31_group abundances and showed the highest concentrations of all short-chain fatty acids (SCFAs) in the hindgut. Fibrobacterota, Bacteroidota, Spirochaetota, Prevotellaceae_NK3B31_group, Prevotella, and Treponema in the colon or rectum were positively correlated with acetate, propionate, butyrate, and total SCFAs. These findings suggested that aerobic bacteria and facultative anaerobes in the foregut will gradually be replaced by anaerobes in the hindgut. The W diet had the best fermentability and was beneficial to the colonization of microbial communities that mainly used carbohydrates. The hindgut flora of the PR diet group may be more balanced with fewer potential pathogenic bacteria. Many microbial communities have been identified to contribute positively to the SCFA production of the hindgut. Collectively, our study revealed the spatial variation regularities of GIT microbial communities in an adult pig model and provided new insights into GIT microbiota and responses of metabolites to cereal grain diets.
Collapse
Affiliation(s)
- Ganyi Feng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Menglong Deng
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Rui Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Gaifeng Hou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qing Ouyang
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Xianji Jiang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Xiaojie Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Hui Tang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Shihua Pu
- Chongqing Academy of Animal Science, Rongchang, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Dan Wan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
2
|
Liu T, Guo Y, Lu C, Cai C, Gao P, Cao G, Li B, Guo X, Yang Y. Effect of Different Pig Fecal Microbiota Transplantation on Mice Intestinal Function and Microbiota Changes During Cold Exposure. Front Vet Sci 2022; 9:805815. [PMID: 35498721 PMCID: PMC9044030 DOI: 10.3389/fvets.2022.805815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Cold stress influences intestinal processes, causing physiological and immunological responses in animals. Intestinal microbiota participates in maintaining the stability of the intestinal environment. However, phenotypic characteristics and the effects of porcine microbiota changes under cold conditions remain poorly understood. Here, the fecal microbiota of cold tolerant breed (Mashen) and cold sensitive breed (Duroc-Landrace-Yorkshire) was transferred to germ-free mice, respectively. After a cold exposure (4°C) for 21 days, intestinal function and microbe changes of mice were explored. The results showed that Mashen pigs microbiota transplantation made the body temperature of the mice stable, in which the fat weight and expression of uncoupling protein 1 (UCP1), carnitine palmitoyltransferase 1B (Cpt1b), and Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) were significantly higher (P < 0.05) than those of the control group. The results of intestinal structure and expression of serum inflammatory factors showed that fecal microbiota transplantation (FMT) mice have more intact intestinal structure and high expression of proinflammatory factor such as interleukin-4 (IL-4). The study of mice fecal microbiome characterized via 16S rRNA sequencing found that pig microbiota transplantation changed the abundance of Firmicutes. In addition, it identified discriminative features of Firmicutes in the microbiota between two breeds of pig, in which Clostridiaceae were enriched in the microbiota community of Mashen pig and Coriobacteriales were significantly (P < 0.05) enriched in the Duroc-Landrace-Yorkshire pig microbiota transplantation group based on linear discriminant analysis effect size (LEfSe) analysis. Finally, we found that the content of propionic acid and butyric acid in rectal contents significantly changed and the abundances of Clostridium and Lachnospira showed significant correlations with changes in short-chain fatty acids. The results suggest that pig fecal microbiota transplantation can alleviate the changes in physiological and biochemical indicators in mice caused by cold exposure. Mice have gut microbes altered and improved gut barrier function via fecal microbiota transplantation in pigs.
Collapse
|
3
|
Lu C, Liu Y, Ma Y, Wang S, Cai C, Yang Y, Zhao Y, Liang G, Cao G, Li B, Kim SW, Guo X, Gao P. Comparative Evaluation of the Ileum Microbiota Composition in Piglets at Different Growth Stages. Front Microbiol 2021; 12:765691. [PMID: 34925272 PMCID: PMC8672721 DOI: 10.3389/fmicb.2021.765691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Intestinal microbiota can affect the intake, storage, and absorption of nutrients in the body, thereby greatly impacting the growth and development of animals. In addition to diet, the breed and growth stages of pigs could also affect changes in the intestinal microbiota. However, research on the developmental changes in the ileum microbiota of piglets remains unclear. In this study, the ileum microbiota of Jinfen White and Mashen piglets at different developmental stages were investigated using 16S rRNA sequencing. Physiologically, the villus height of the ileum decreased, and the crypt depth increased during the development of the two pig breeds. Additionally, the serum antioxidant factors in the Jinfen White piglets were significantly higher than in the Mashen piglets at the end of the nursing stage. A total of 690 operational taxonomic units (OTUs) belonging to 21 phyla and 286 genera were identified, of which Firmicutes and Proteobacteria were the dominant phyla during the development of both the Jinfen White and Mashen piglets, accounting for ∼90% of all OTUs. Further research revealed differences in dominant bacteria between the two breeds. With increasing age, the ileum microbial diversity increased, and in both the pig breeds, the proportion of Firmicutes increased, whereas the proportion of Proteobacteria decreased. Additionally, different samples were characterized by specific genera, and different Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were predicted at certain developmental stages. Finally, the correlation between the ileum microbiota and physiological features was analyzed, and it was suggested that the host and environmental factors play important roles in the formation of the microbial community structure in piglets. In summary, we delineated the structure, function, and differences in ileum microbiota between Jinfen White and Mashen piglets during different growth stages. This study helps to understand the development of the intestinal microbiota in local and hybrid pig breeds.
Collapse
Affiliation(s)
- Chang Lu
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Yadan Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Yijia Ma
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Shu Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Yan Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Guoming Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
4
|
Pollock J, Glendinning L, Smith LA, Mohsin H, Gally DL, Hutchings MR, Houdijk JGM. Temporal and nutritional effects on the weaner pig ileal microbiota. Anim Microbiome 2021; 3:58. [PMID: 34454628 PMCID: PMC8403407 DOI: 10.1186/s42523-021-00119-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The porcine gastrointestinal microbiota has been linked to both host health and performance. Most pig gut microbiota studies target faecal material, which is not representative of microbiota dynamics in other discrete gut sections. The weaning transition period in pigs is a key development stage, with gastrointestinal problems being prominent after often sudden introduction to a solid diet. A better understanding of both temporal and nutritional effects on the small intestinal microbiota is required. Here, the development of the porcine ileal microbiota under differing levels of dietary protein was observed over the immediate post-weaning period. RESULTS Ileal digesta samples were obtained at post-mortem prior to weaning day (day - 1) for baseline measurements. The remaining pigs were introduced to either an 18% (low) or 23% (high) protein diet on weaning day (day 0) and further ileal digesta sampling was carried out at days 5, 9 and 13 post-weaning. We identified significant changes in microbiome structure (P = 0.01), a reduction in microbiome richness (P = 0.02) and changes in the abundance of specific bacterial taxa from baseline until 13 days post-weaning. The ileal microbiota became less stable after the introduction to a solid diet at weaning (P = 0.036), was highly variable between pigs and no relationship was observed between average daily weight gain and microbiota composition. The ileal microbiota was less stable in pigs fed the high protein diet (P = 0.05), with several pathogenic bacterial genera being significantly higher in abundance in this group. Samples from the low protein and high protein groups did not cluster separately by their CAZyme (carbohydrate-active enzyme) composition, but GH33 exosialidases were found to be significantly more abundant in the HP group (P = 0.006). CONCLUSIONS The weaner pig ileal microbiota changed rapidly and was initially destabilised by the sudden introduction to feed. Nutritional composition influenced ileal microbiota development, with the high protein diet being associated with an increased abundance of significant porcine pathogens and the upregulation of GH33 exosialidases-which can influence host-microbe interactions and pathogenicity. These findings contribute to our understanding of a lesser studied gut compartment that is not only a key site of digestion, but also a target for the development of nutritional interventions to improve gut health and host growth performance during the critical weaning transition period.
Collapse
Affiliation(s)
- Jolinda Pollock
- Animal and Veterinary Sciences, Scotland’s Rural College (SRUC), Edinburgh, UK
- SRUC Veterinary Services, Scotland’s Rural College, Edinburgh, UK
| | - Laura Glendinning
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Lesley A. Smith
- Animal and Veterinary Sciences, Scotland’s Rural College (SRUC), Edinburgh, UK
| | - Hamna Mohsin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - David L. Gally
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - Jos G. M. Houdijk
- Animal and Veterinary Sciences, Scotland’s Rural College (SRUC), Edinburgh, UK
| |
Collapse
|