1
|
Wdowiak-Wróbel S, Kalita M, Palusińska-Szysz M, Marek-Kozaczuk M, Sokołowski W, Coutinho TA. Pantoea trifolii sp. nov., a novel bacterium isolated from Trifolium rubens root nodules. Sci Rep 2024; 14:2698. [PMID: 38302681 PMCID: PMC10834434 DOI: 10.1038/s41598-024-53200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
A novel bacterium, designated strain MMK2T, was isolated from a surface-sterilised root nodule of a Trifolium rubens plant growing in south-eastern Poland. Cells were Gram negative, non-spore forming and rod shaped. The strain had the highest 16S rRNA gene sequence similarity with P. endophytica (99.4%), P. leporis (99.4%) P. rwandensis (98.8%) and P. rodasii (98.45%). Phylogenomic analysis clearly showed that strain MMK2T and an additional strain, MMK3, should reside in the genus Pantoea and that they were most closely related to P. endophytica and P. leporis. Genome comparisons showed that the novel strain shared 82.96-93.50% average nucleotide identity and 26.2-53. 2% digital DNA:DNA hybridization with closely related species. Both strains produced siderophores and were able to solubilise phosphates. The MMK2T strain was also able to produce indole-3-acetic acid. The tested strains differed in their antimicrobial activity, but both were able to inhibit the growth of Sclerotinia sclerotiorum 10Ss01. Based on the results of the phenotypic, phylogenomic, genomic and chemotaxonomic analyses, strains MMK2T and MMK3 belong to a novel species in the genus Pantoea for which the name Pantoea trifolii sp. nov. is proposed with the type strain MMK2T (= DSM 115063T = LMG 33049T).
Collapse
Affiliation(s)
- Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Monika Marek-Kozaczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Wojciech Sokołowski
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Teresa A Coutinho
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics/Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
2
|
Rajkumari J, Katiyar P, Dheeman S, Pandey P, Maheshwari DK. The changing paradigm of rhizobial taxonomy and its systematic growth upto postgenomic technologies. World J Microbiol Biotechnol 2022; 38:206. [PMID: 36008736 DOI: 10.1007/s11274-022-03370-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Rhizobia are a diazotrophic group of bacteria that are usually isolated form the nodules in roots, stem of leguminous plants and are able to form nodules in the host plant owing to the presence of symbiotic genes. The rhizobial community is highly diverse, and therefore, the taxonomy and genera-wise classification of rhizobia has been constantly changing since the last three decades. This is mainly due to technical advancements, and shifts in definitions, resulting in a changing paradigm of rhizobia taxonomy. Initially, the taxonomic definitions at the species and sub species level were based on phylogenetic analysis of 16S rRNA sequence, followed by polyphasic approach to have phenotypic, biochemical, and genetic analysis including multilocus sequence analysis. Rhizobia mainly belonging to α- and β-proteobacteria, and recently new additions from γ-proteobacteria had been classified. Nowadays rhizobial taxonomy has been replaced by genome-based taxonomy that allows gaining more insights of genomic characteristics. These omics-technologies provide genome specific information that considers nodulation and symbiotic genes, along with molecular markers as taxonomic traits. Taxonomy based on complete genome sequence (genotaxonomy), average nucleotide identity, is now being considered as primary approach, resulting in an ongoing paradigm shift in rhizobial taxonomy. Also, pairwise whole-genome comparisons, phylogenomic analyses offer correlations between DNA and DNA re-association values that have delineated biologically important species. This review elaborates the present classification and taxonomy of rhizobia, vis-a-vis development of technical advancements, parameters and controversies associated with it, and describe the updated information on evolutionary lineages of rhizobia.
Collapse
Affiliation(s)
- Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Prashant Katiyar
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India
| | - Shrivardhan Dheeman
- Department of Microbiology, Sardar Bhagwan Singh University, Dehra Dun, Uttarakhand, 248161, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India.
| |
Collapse
|
3
|
Lamin H, Alami S, Lamrabet M, Bouhnik O, Bennis M, Abdelmoumen H, Bedmar EJ, Missbah-El Idrissi M. Bradyrhizobium sp. sv. retamae nodulates Retama monosperma grown in a lead and zinc mine tailings in Eastern Morocco. Braz J Microbiol 2021; 52:639-649. [PMID: 33447935 PMCID: PMC8105474 DOI: 10.1007/s42770-021-00420-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022] Open
Abstract
The aim of this work was to characterize and identify some bacteria isolated from the root nodules of Retama monosperma grown in Sidi Boubker lead and zinc mine tailings. Very few root nodules were obtained on the root nodules of R. monosperma grown in these soils. The three bacteria isolated from the root nodules were tolerant in vitro to different concentrations of heavy metals, including lead and zinc. The rep-PCR experiments showed that the three isolates have different molecular fingerprints and were considered as three different strains. The analysis of their 16S rRNA gene sequences proved their affiliation to the genus Bradyrhizobium. The analysis and phylogeny of the housekeeping genes atpD, glnII, gyrB, recA, and rpoB confirmed that the closest species was B. valentinum with similarity percentages of 95.61 to 95.82%. The three isolates recovered from the root nodules were slow-growing rhizobia capable to renodulate their original host plant in the presence of Pb-acetate. They were able to nodulate R. sphaerocarpa and Lupinus luteus also but not Glycine max or Phaseolus vulgaris. The phylogeny of the nodA and nodC nodulation genes as well as the nifH gene of the three strains showed that they belong to the symbiovar retamae of the genus Bradyrhizobium. The three strains isolated could be considered for use as inoculum for Retama plants before use in phytoremediation experiments.
Collapse
Affiliation(s)
- Hanane Lamin
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Soufiane Alami
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Mouad Lamrabet
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Omar Bouhnik
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Meryeme Bennis
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Hanaa Abdelmoumen
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-419, 18080, Granada, Spain
| | - Mustapha Missbah-El Idrissi
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco.
| |
Collapse
|
4
|
Bouhnik O, Lamin H, Alami S, Bennis M, Ouajdi M, Bellaka M, El Antry S, Abbas Y, Abdelmoumen H, Bedmar EJ, El Idrissi MM. The endemic Chamaecytisus albidus is nodulated by symbiovar genistearum of Bradyrhizobium in the Moroccan Maamora Forest. Syst Appl Microbiol 2021; 44:126197. [PMID: 33838436 DOI: 10.1016/j.syapm.2021.126197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
Out of 54 isolates from root nodules of the Moroccan-endemic Chamaecytisus albidus plants growing in soils from the Maamora cork oak forest, 44 isolates formed nodules when used to infect their original host plant. A phenotypic analysis showed the metabolic diversity of the strains that used different carbohydrates and amino acids as sole carbon and nitrogen sources. The isolates grew on media with pH values ranging from 6 to 8. However, they did not tolerate high temperatures or drought and they did not grow on media with salt concentrations higher than 85 mM. REP-PCR fingerprinting grouped the strains into 12 clusters, of which representative strains were selected for ARDRA and rrs analyses. The rrs gene sequence analysis indicated that all 12 strains were members of the genus Bradyrhizobium and their phylogeny showed that they were grouped into two different clusters. Two strains from each group were selected for multilocus sequence analysis (MLSA) using atpD, recA, gyrB and glnII housekeeping genes. The inferred phylogenetic trees confirmed that the strains clustered into two divergent clusters. Strains CM55 and CM57 were affiliated to the B. canariense/B. lupini group, whereas strains CM61 and CM64 were regrouped within the B. cytisi/B. rifense lineage. The analysis of the nodC symbiotic gene affiliated the strains to the symbiovar genistearum. The strains were also able to nodulate Retama monosperma, Lupinus luteus and Cytisus monspessulanus, but not Phaseolus vulgaris or Glycine max. Inoculation tests with C. albidus showed that some strains could be exploited as efficient inocula that could be used to improve plant growth in the Maamora forest.
Collapse
Affiliation(s)
- Omar Bouhnik
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Hanane Lamin
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Soufiane Alami
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Meryeme Bennis
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Mohammed Ouajdi
- Centre de Recherche Forestière, Département des Eaux et Forêts, Avenue Omar Ibn El Khattab, BP 763, Rabat-Agdal 10050, Morocco
| | - M'hamed Bellaka
- Centre de Recherche Forestière, Département des Eaux et Forêts, Avenue Omar Ibn El Khattab, BP 763, Rabat-Agdal 10050, Morocco
| | - Salwa El Antry
- Centre de Recherche Forestière, Département des Eaux et Forêts, Avenue Omar Ibn El Khattab, BP 763, Rabat-Agdal 10050, Morocco
| | - Younes Abbas
- Faculté Polydiciplinaire, Université Sultan Moulay Slimane, Beni Mellal, Morocco
| | - Hanaa Abdelmoumen
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Eulogio J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, CSIC Estación Experimental del Zaidín, Apartado Postal 419, 18080 Granada, Spain
| | - Mustapha Missbah El Idrissi
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco.
| |
Collapse
|