1
|
Raymundo T, Martínez-González CR, Martínez-Pineda M, Cobos-Villagrán A, Ramírez-Rosales I, Valenzuela R. Three New Species of Mytilinidioid Fungi (Dothideomycetes, Ascomycota) from Mexico. J Fungi (Basel) 2024; 10:725. [PMID: 39452677 PMCID: PMC11514609 DOI: 10.3390/jof10100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Mytilinidioid fungi are conchiform in nature, with the appearance of bivalve shells or wedge-shaped, rigid, brittle, and carbonaceous hysterothecia growing on the bark of gymnosperms or angiosperms. Based on their morphological characteristics and molecular markers (ITS and LSU), this study describes three new species of mytilinidioid fungi: Ericboehmia mexicana of the family Hysteriaceae of the order Hysteriales and Lophium pinicola and Mytilinidion mexicanum of the family Mytilinidiaceae of the order Mytilinidiales. The first species grows on Liquidambar styracyphlua, the second species grows on Pinus patula, and the third species grows on Acacia californica subsp. pringlei. The specimens studied were deposited in the ENCB Herbarium.
Collapse
Affiliation(s)
- Tania Raymundo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Botánica, Laboratorio de Micología, Prolongación de Carpio and Plan de Ayala s.n., Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México 11340, Mexico; (T.R.); (M.M.-P.); (A.C.-V.)
| | - César R. Martínez-González
- Departamento de Fitotecnia, Instituto de Horticultura, Universidad Autónoma Chapingo, km 38.5 Carretera Federal México-Texcoco, Texcoco 56230, Estado de México, Mexico;
| | - Michelle Martínez-Pineda
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Botánica, Laboratorio de Micología, Prolongación de Carpio and Plan de Ayala s.n., Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México 11340, Mexico; (T.R.); (M.M.-P.); (A.C.-V.)
| | - Aurora Cobos-Villagrán
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Botánica, Laboratorio de Micología, Prolongación de Carpio and Plan de Ayala s.n., Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México 11340, Mexico; (T.R.); (M.M.-P.); (A.C.-V.)
| | - Isabel Ramírez-Rosales
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Campus Principale, Sherbrooke, QC J1K 2R1, Canada;
| | - Ricardo Valenzuela
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Botánica, Laboratorio de Micología, Prolongación de Carpio and Plan de Ayala s.n., Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México 11340, Mexico; (T.R.); (M.M.-P.); (A.C.-V.)
| |
Collapse
|
2
|
Gong W, Li Q, Tu Y, Yang D, Lai Y, Tang W, Mao W, Feng Y, Liu L, Ji X, Li H. Diversity and functional traits of seed endophytes of Dysphania ambrosioides from heavy metal contaminated and non-contaminated areas. World J Microbiol Biotechnol 2024; 40:191. [PMID: 38702442 DOI: 10.1007/s11274-024-04003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Seed endophytes played a crucial role on host plants stress tolerance and heavy metal (HM) accumulation. Dysphania ambrosioides is a hyperaccumulator and showed strong tolerance and extraordinary accumulation capacities of multiple HMs. However, little is known about its seed endophytes response to field HM-contamination, and its role on host plants HM tolerance and accumulation. In this study, the seed endophytic community of D. ambrosioides from HM-contaminated area (H) and non-contaminated area (N) were investigated by both culture-dependent and independent methods. Moreover, Cd tolerance and the plant growth promoting (PGP) traits of dominant endophytes from site H and N were evaluated. The results showed that in both studies, HM-contamination reduced the diversity and richness of endophytic community and changed the most dominant endophyte, but increased resistant species abundance. By functional trait assessments, a great number of dominant endophytes displayed multiple PGP traits and Cd tolerance. Interestingly, soil HM-contamination significantly increased the percentage of Cd tolerance isolates of Agrobacterium and Epicoccum, but significantly decreased the ration of Agrobacterium with the siderophore production ability. However, the other PGP traits of isolates from site H and N showed no significant difference. Therefore, it was suggested that D. ambrosioides might improve its HM tolerance and accumulation through harboring more HM-resistant endophytes rather than PGP endophytes, but to prove this, more work need to be conducted in the future.
Collapse
Affiliation(s)
- Weijun Gong
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qiaohong Li
- The First People's Hospital of Yunnan Province, Kunming, 650500, China
| | - Yungui Tu
- The First People's Hospital of Anning, Kunming, 650300, China
| | - Dian Yang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yibin Lai
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wenting Tang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wenqin Mao
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yue Feng
- The First People's Hospital of Anning, Kunming, 650300, China
| | - Li Liu
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuling Ji
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Li
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
3
|
The chalara-like anamorphs of Leotiomycetes. FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AbstractThe chalara-like anamorphs of Leotiomycetes are phialidic hyphomycetes with cylindrical collarettes and deeply seated sporulating loci, and hyaline, aseptate or septate, cylindrical conidia. They are commonly found on plant litters in both terrestrial and submerged environments, and with broad geographical distribution. This paper reports our research result of diversity, taxonomy and phylogeny of these fungi in China, which is based on a systematic study by using an integrated approach of literature study, morphological observation and phylogenetic analyses of 153 chalara-like fungal species with diversified morphology in conidiomata, setae, conidiophores, phialides and conidia. The phylogenetic analyses employing different datasets of SSU, LSU and ITS sequences of 116 species showed that these chalara-like fungi were paraphyletic and scattered in 20 accepted genera belonging to five families of Leotiomycetes: Arachnopezizaceae, Hamatocanthoscyphaceae, Helotiaceae, Neolauriomycetaceae and Pezizellaceae. Additional six genera, Ascoconidium, Bioscypha, Chalarodendron, Didonia, Phaeoscypha and Tapesina, all reported with chalara-like anamorphs in literatures, are also accepted as members of Pezizellaceae or Leotiomycetes genera incertae sedis. Among of these 26 accepted genera of chalara-like fungi in Leotiomycetes, 17 genera are asexually typified genera (Ascoconidium, Bloxamia, Chalara, Chalarodendron, Constrictochalara, Cylindrochalara, Cylindrocephalum, Leochalara, Lareunionomyces, Minichalara, Neochalara, Neolauriomyces, Nagrajchalara, Parachalara, Stipitochalara, Xenochalara and Zymochalara), and 9 are sexually typified genera (Bioscypha, Bloxamiella, Calycellina, Calycina, Didonia, Hymenoscyphus, Mollisina, Phaeoscypha and Tapesina). The phylogenetic significance of conidial septation in generic delimitation was further confirmed; while other morphologies such as conidiomata, setae, conidiophores, phialides, conidial length, and conidial ornamentation have little phylogenetic significance, but could be used for species delimitation. The polyphyletic genus Chalara s. lat. is revised with monophyletic generic concepts by redelimitation of Chalara s. str. in a narrow concept, adaption of the emended Calycina to also include asexually typified chalara-like fungi, reinstatement of Cylindrocephalum, and introduction of six new genera: Constrictochalara W.P. Wu & Y.Z. Diao, Leochalara W.P. Wu & Y.Z. Diao, Minichalara W.P. Wu & Y.Z. Diao, Nagrajchalara W.P. Wu & Y.Z. Diao, Parachalara W.P. Wu & Y.Z. Diao and Stipitochalara W.P. Wu & Y.Z. Diao. Chaetochalara becomes a synonym of Chalara s. str., and the known species are disassembled into Chalara s. str. and Nagrajchalara. The polyphyletic genus Bloxamia is also redefined by introducing the new genus Bloxamiella W.P. Wu & Y.Z. Diao for B. cyatheicola. Five existing species of Chalara s. lat. were excluded from Leotiomycetes and reclassified: Chalara breviclavata as Chalarosphaeria breviclavata W.P. Wu & Y.Z. Diao gen. et sp. nov. in Chaetosphaeriaceae, C. vaccinii as Sordariochalara vaccinii W.P. Wu & Y.Z. Diao gen. et sp. nov. in Lasiosphaeriaceae, and three other Chalara species with hyaline phialides, C. hyalina, C. schoenoplecti and C. siamense as combinations of Pyxidiophora in Pyxidiophoraceae. For biodiversity of these fungi in China, a total of 80 species in 12 genera, including 60 new species, 17 new records and 1 new name, were discovered and documented in this paper. In addition, five species including three new species are reported from Japan. In connection to this revision, a total of 44 new combinations are made. The identification keys are provided for most of these genera. Future research area of these fungi should be the phylogenetic relationship of several sexually typified genera such as Bioscypha, Calycellina, Calycina, Didonia, Phaeoscypha, Rodwayella and Tapesina, and systematic revision of existing names under the genera Bloxamia, Chaetochalara and Chalara.
Collapse
|
4
|
Uniting the Role of Endophytic Fungi against Plant Pathogens and Their Interaction. J Fungi (Basel) 2023; 9:jof9010072. [PMID: 36675893 PMCID: PMC9860820 DOI: 10.3390/jof9010072] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Endophytic fungi are used as the most common microbial biological control agents (MBCAs) against phytopathogens and are ubiquitous in all plant parts. Most of the fungal species have roles against a variety of plant pathogens. Fungal endophytes provide different services to be used as pathogen control agents, using an important aspect in the form of enhanced plant growth and induced systemic resistance, produce a variety of antifungal secondary metabolites (lipopeptides, antibiotics and enzymes) through colonization, and compete with other pathogenic microorganisms for growth factors (space and nutrients). The purpose of this review is to highlight the biological control potential of fungal species with antifungal properties against different fungal plant pathogens. We focused on the introduction, biology, isolation, identification of endophytic fungi, and their antifungal activity against fungal plant pathogens. The endosymbionts have developed specific genes that exhibited endophytic behavior and demonstrated defensive responses against pathogens such as antibiosis, parasitism, lytic enzyme and competition, siderophore production, and indirect responses by induced systemic resistance (ISR) in the host plant. Finally, different microscopic detection techniques to study microbial interactions (endophytic and pathogenic fungal interactions) in host plants are briefly discussed.
Collapse
|
5
|
Zhou YQ, Yao SC, Wang J, Xie XY, Tan XM, Huang RS, Yang XF, Tan Y, Yu LY, Fu P. Cultivable endophytic fungal community associated with the karst endemic plant Nervilia fordii and their antimicrobial activity. Front Microbiol 2022; 13:1063897. [PMID: 36504825 PMCID: PMC9730403 DOI: 10.3389/fmicb.2022.1063897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Endophytic fungi from medicinal plants with specific pharmacological functions attract much attention to provide the possibility of discovering valuable natural drugs with novel structures and biological activities. Nervilia fordii is a rare and endangered karst endemic plant that is used as medicine and food homology in Guangxi, China. These plants have been reported to have antimicrobial, antitumor, antiviral, and anti-inflammatory activities. However, few studies have focused on the diversity and antibacterial activity of endophytic fungi from N. fordii. In the present study, 184 endophytic fungi were isolated from the healthy tissues of N. fordii, and their molecular diversity and antimicrobial activities were analyzed for the first time. These fungi were categorized into 85 different morphotypes based on the morphological characteristics and the similarity between the target sequence and the reference sequence in the GenBank database. With the exception of 18 unidentified fungi, the fungal isolates belonged to at least 2 phyla, 4 classes, 15 orders, 45 known genera, and 45 different species, which showed high abundance, rich diversity, and obvious tissue specificity. All isolates were employed to screen for their antimicrobial activities via the agar diffusion method against Escherichia coli, Staphylococcus aureus, and Candida tropicalis. Among these endophytes, eight strains (9.41%) displayed inhibitory activity against E. coli, 11 strains (12.94%) against S. aureus, and two strains (2.35%) against C. tropicalis, to some extent. In particular, our study showed for the first time that the fungal agar plugs of Penicillium macrosclerotiorum 1151# exhibited promising antibacterial activity against E. coli and S. aureus. Moreover, the ethyl acetate (EA) extract of P. macrosclerotiorum 1151# had antibacterial effects against E. coli and S. aureus with a minimum inhibitory concentration (MIC) of 0.5 mg ml-1. Further research also confirmed that one of the antimicrobial compounds of P. macrosclerotiorum 1151# was methyl chloroacetate and exhibited excellent antibacterial activity against E. coli and S. aureus up to 1.71-fold and 1.13-fold compared with tetracycline (TET) (5 mg ml-1), respectively. Taken together, the present data suggest that various endophytic fungi of N. fordii could be exploited as sources of novel natural antimicrobial agents.
Collapse
Affiliation(s)
- Ya-Qin Zhou
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Conservation and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Shao-Chang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jie Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Zhuang Yao Key Laboratory of Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Xin-Yi Xie
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiao-Ming Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rong-Shao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xin-Feng Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yong Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Li-Ying Yu
- Guangxi Key Laboratory of Medicinal Resources Conservation and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Peng Fu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Zhuang Yao Key Laboratory of Medicine, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
6
|
Munusamy M, Ching KC, Yang LK, Crasta S, Gakuubi MM, Chee ZY, Wibowo M, Leong CY, Kanagasundaram Y, Ng SB. Chemical elicitation as an avenue for discovery of bioactive compounds from fungal endophytes. Front Chem 2022; 10:1024854. [PMID: 36505735 PMCID: PMC9727085 DOI: 10.3389/fchem.2022.1024854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
The present study investigated the molecular phylogeny, antimicrobial and cytotoxic activities of fungal endophytes obtained from the A*STAR Natural Organism Library (NOL) and previously isolated from Sungei Buloh Wetland Reserve, Singapore. Phylogenetic analysis based on ITS2 gene suggests that these isolates belong to 46 morphotypes and are affiliated to 23 different taxa in 17 genera of the Ascomycota phylum. Colletotrichum was the most dominant fungal genus accounting for 37% of all the isolates, followed by Diaporthe (13%), Phyllosticta (10.9%) and Diplodia (8.7%). Chemical elicitation using 5-azacytidine, a DNA methyltransferase inhibitor and suberoylanilide hydroxamic acid, a histone deacetylase inhibitor resulted in an increase in the number of active strains. Bioassay-guided isolation and structural elucidation yielded pestahivin and two new analogues from Bartalinia sp. F9447. Pestahivin and its related analogues did not exhibit antibacterial activity against Staphylococcus aureus but displayed strong antifungal activities against Candida albicans and Aspergillus brasiliensis, with IC50 values ranging from 0.46 ± 0.06 to 144 ± 18 µM. Pestahivin and its two analogues furthermore exhibited cytotoxic activity against A549 and MIA PACA-2 cancer cell lines with IC50 values in the range of 0.65 ± 0.12 to 42 ± 5.2 µM. The finding from this study reinforces that chemical epigenetic induction is a promising approach for the discovery of bioactive fungal secondary metabolites encoded by cryptic gene clusters.
Collapse
Affiliation(s)
- Madhaiyan Munusamy
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kuan Chieh Ching
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sharon Crasta
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Martin Muthee Gakuubi
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhao Yan Chee
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mario Wibowo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chung Yan Leong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore,*Correspondence: Siew Bee Ng,
| |
Collapse
|
7
|
Ahmad MF, Zahari R, Mohtar M, Wan-Muhammad-Azrul WA, Hishamuddin MS, Samsudin NIP, Hassan A, Terhem R. Diversity of endophytic fungi isolated from different plant parts of Acacia mangium, and antagonistic activity against Ceratocystis fimbriata, a causal agent of Ceratocystis wilt disease of A. mangium in Malaysia. Front Microbiol 2022; 13:887880. [PMID: 36425026 PMCID: PMC9679781 DOI: 10.3389/fmicb.2022.887880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/04/2022] [Indexed: 12/01/2023] Open
Abstract
Acacia mangium is an important wood for commercial products especially pulp and medium-density fibreboard. However, it is susceptible to Ceratocystis fimbriata infection, leading to Ceratocystis wilt. Therefore, the present work aimed to (i) establish the diversity of endophytic fungi in different plant parts of A. mangium,and (ii) evaluate the antifungal potentials of the isolated and identified endophytic fungi against C. fimbriata. Endophytic fungal identification was conducted by PCR amplification and sequencing of the internal transcribed spacer 1 (ITS1) and ITS4 regions of nuclear ribosomal DNA. A total of 66 endophytic fungi were successfully isolated from different parts of A. mangium; leaf (21), stem (13), petiole (12), root (9), flower (6), and fruit (5). The endophytic fungal isolates belonged to Ascomycota (95.5%) and Zygomycota (4.5%). For Ascomycota 13 genera were identified: Trichoderma (28.6%), Nigrospora (28.6%), Pestalotiopsis (12.7%), Lasiodiplodia (9.5%), Aspergillus (6.3%), Sordariomycetes (3%), and Neopestalotiopsis, Pseudopestalotiopsis, Eutiarosporella, Curvularia, Fusarium, Penicillium, and Hypoxylon each with a single isolate. For Zygomycota, only Blakeslea sp. (5%) was isolated. Against C. fimbriata, Trichoderma koningiopsis (AC 1S) from stem, Nigrospora oryzae (AC 7L) from leaf, Nigrospora sphaerica (AC 3F) from the flower, Lasiodiplodia sp. (AC 2 U) from fruit, Nigrospora sphaerica (AC 4P) from petiole, and Trichoderma sp. (AC 9R) from root exhibited strong inhibition for C. fimbriata between 58.33 to 69.23%. Thus, it can be concluded that certain endophytic fungi of A. mangium have the potential to be harnessed as anti-Ceratocystis agent in future biotechnological applications.
Collapse
Affiliation(s)
- Mohd Farid Ahmad
- Mycology and Pathology Unit, Forest Research Institute Malaysia, Kepong, Malaysia
| | - Rozihawati Zahari
- Laboratory of Forest Pathology and Tree Health, Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Mastura Mohtar
- Bio Activity Programme, Natural Products Division, Forest Research Institute Malaysia, Kepong, Malaysia
| | - Wan Azhar Wan-Muhammad-Azrul
- Pest and Disease Management Programme, Horticulture Research Centre, Malaysian Agriculture Research and Development (MARDI), Persiaran Mardi-UPM, Serdang, Malaysia
| | - Muhammad Syahmi Hishamuddin
- Laboratory of Forest Pathology and Tree Health, Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Nik Iskandar Putra Samsudin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang, Malaysia
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Affendy Hassan
- Faculty of Tropical Forestry, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Razak Terhem
- Laboratory of Forest Pathology and Tree Health, Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| |
Collapse
|
8
|
Smith JA, Quesada T, Alake G, Anger N. Transcontinental Dispersal of Nonendemic Fungal Pathogens through Wooden Handicraft Imports. mBio 2022; 13:e0107522. [PMID: 35766379 PMCID: PMC9426497 DOI: 10.1128/mbio.01075-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
This study examined the viability and diversity of fungi harbored in imported wooden handicraft products sold in six retail stores in Florida, United States. Despite being subjected to trade regulations that require various sterilization/fumigation protocols, our study demonstrates high survival and diversity of fungi in wood products originating from at least seven countries on three continents. Among these fungi were nonendemic plant and human pathogens, as well as mycotoxin producers. Several products that are sold for use in food preparation and consumption harbored a novel (to North America) plant and human pathogen, Paecilomyces formosus. In addition, a high number of species isolated were thermophilic and included halophilic species, suggesting adaptability and selection through current wood treatment protocols that utilize heat and/or fumigation with methyl-bromide. This research suggests that current federal guidelines for imports of wooden goods are not sufficient to avoid the transit of potential live pathogens and demonstrates the need to increase safeguards at both points of origin and entry for biosecurity against introduction from invasive fungal species in wood products. Future import regulations should consider living fungi, their tolerance to extreme conditions, and their potential survival in solid substrates. Mitigation efforts may require additional steps such as more stringent fumigation and/or sterilization strategies and limiting use of wood that has not been processed to remove bark and decay. IMPORTANCE This study, the first of its kind, demonstrates the risk of importation of nonendemic foreign fungi on wooden handicrafts into the United States despite the application of sanitation protocols. Previous risk assessments of imported wood products have focused on potential for introduction of invasive arthropods (and their fungal symbionts) or have focused on other classes of wood products (timber, wooden furniture, garden products, etc.). Little to no attention has been paid to wooden handicrafts and the fungal pathogens (of plants and humans) they may carry. Due to the large size and diversity of this market, the risk for introduction of potentially dangerous pathogens is significant as illustrated by the results of this study.
Collapse
Affiliation(s)
- Jason A. Smith
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Tania Quesada
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Gideon Alake
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Nicolas Anger
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Senanayake IC, Pem D, Rathnayaka AR, Wijesinghe SN, Tibpromma S, Wanasinghe DN, Phookamsak R, Kularathnage ND, Gomdola D, Harishchandra D, Dissanayake LS, Xiang MM, Ekanayaka AH, McKenzie EHC, Hyde KD, Zhang HX, Xie N. Predicting global numbers of teleomorphic ascomycetes. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00498-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractSexual reproduction is the basic way to form high genetic diversity and it is beneficial in evolution and speciation of fungi. The global diversity of teleomorphic species in Ascomycota has not been estimated. This paper estimates the species number for sexual ascomycetes based on five different estimation approaches, viz. by numbers of described fungi, by fungus:substrate ratio, by ecological distribution, by meta-DNA barcoding or culture-independent studies and by previous estimates of species in Ascomycota. The assumptions were made with the currently most accepted, “2.2–3.8 million” species estimate and results of previous studies concluding that 90% of the described ascomycetes reproduce sexually. The Catalogue of Life, Species Fungorum and published research were used for data procurement. The average value of teleomorphic species in Ascomycota from all methods is 1.86 million, ranging from 1.37 to 2.56 million. However, only around 83,000 teleomorphic species have been described in Ascomycota and deposited in data repositories. The ratio between described teleomorphic ascomycetes to predicted teleomorphic ascomycetes is 1:22. Therefore, where are the undiscovered teleomorphic ascomycetes? The undescribed species are no doubt to be found in biodiversity hot spots, poorly-studied areas and species complexes. Other poorly studied niches include extremophiles, lichenicolous fungi, human pathogens, marine fungi, and fungicolous fungi. Undescribed species are present in unexamined collections in specimen repositories or incompletely described earlier species. Nomenclatural issues, such as the use of separate names for teleomorph and anamorphs, synonyms, conspecific names, illegitimate and invalid names also affect the number of described species. Interspecies introgression results in new species, while species numbers are reduced by extinctions.
Collapse
|
10
|
Mitchell JK, Garrido-Benavent I, Quijada L, Pfister DH. Sareomycetes: more diverse than meets the eye. IMA Fungus 2021; 12:6. [PMID: 33726866 PMCID: PMC7961326 DOI: 10.1186/s43008-021-00056-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/16/2021] [Indexed: 01/16/2023] Open
Abstract
Since its resurrection, the resinicolous discomycete genus Sarea has been accepted as containing two species, one with black apothecia and pycnidia, and one with orange. We investigate this hypothesis using three ribosomal (nuITS, nuLSU, mtSSU) regions from and morphological examination of 70 specimens collected primarily in Europe and North America. The results of our analyses support separation of the traditional Sarea difformis s.lat. and Sarea resinae s.lat. into two distinct genera, Sarea and Zythia. Sarea as circumscribed is shown to conservatively comprise three phylospecies, with one corresponding to Sarea difformis s.str. and two, morphologically indistinguishable, corresponding to the newly combined Sarea coeloplata. Zythia is provisionally maintained as monotypic, containing only a genetically and morphologically variable Z. resinae. The new genus Atrozythia is erected for the new species A. klamathica. Arthrographis lignicola is placed in this genus on molecular grounds, expanding the concept of Sareomycetes by inclusion of a previously unknown type of asexual morph. Dating analyses using additional marker regions indicate the emergence of the Sareomycetes was roughly concurrent with the diversification of the genus Pinus, suggesting that this group of fungi emerged to exploit the newly-available resinous ecological niche supplied by Pinus or another, extinct group of conifers. Our phylogeographic studies also permitted us to study the introductions of these fungi to areas where they are not native, including Antarctica, Cape Verde, and New Zealand and are consistent with historical hypotheses of introduction.
Collapse
Affiliation(s)
- James K Mitchell
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA. .,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA, 02138, USA.
| | - Isaac Garrido-Benavent
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE) & Dept. Botànica i Geologia, Universitat de València, C/ Dr. Moliner 50, 46100-Burjassot, València, Spain
| | - Luis Quijada
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Donald H Pfister
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
11
|
Višňovská D, Pyszko P, Šigut M, Kostovčík M, Kolařík M, Kotásková N, Drozd P. Caterpillar gut and host plant phylloplane mycobiomes differ: a new perspective on fungal involvement in insect guts. FEMS Microbiol Ecol 2021; 96:5855491. [PMID: 32520323 DOI: 10.1093/femsec/fiaa116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Compared with the highly diverse microbiota of leaves, herbivorous insects exhibit impoverished gut microbial communities. Research to date has focused on the bacterial component of these gut microbiomes, neglecting the fungal component. As caterpillar gut bacterial microbiomes are derived strongly from their diet, we hypothesized that their mycobiomes would reflect the host leaf mycobiomes. Using the ITS2 rDNA and V5-V6 16S rRNA gene regions for DNA metabarcoding of caterpillar gut and host leaf sample pairs we compared their mycobiome genus diversity and compositions and identified genera associated with caterpillar guts. Leaves and caterpillar guts harbored different mycobiomes with quite low qualitative similarity (Jaccard index = 38.03%). The fungal genera most significantly associated with the caterpillar gut included Penicillium, Mucor and unidentified Saccharomycetales, whereas leaf-associated genera included Holtermanniella, Gibberella (teleomorph of Fusarium) and Seimatosporium. Although caterpillar gut and leaf mycobiomes had similar genus richness overall, this indicator was not correlated for individual duplets. Moreover, as more samples entered the analysis, mycobiome richness increased more rapidly in caterpillar guts than in leaves. The results suggest that the mycobiota of the caterpillar gut differs from that of their feeding substrate; further, the mycobiomes appear to be richer than the well-studied bacterial microbiotas.
Collapse
Affiliation(s)
- Denisa Višňovská
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Martin Kostovčík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
- BIOCEV, Institute of Microbiology, Academy of Sciences of the Czech Republic, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Nela Kotásková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
12
|
Dasgupta MG, Burragoni S, Amrutha S, Muthupandi M, Parveen ABM, Sivakumar V, Ulaganathan K. Diversity of bacterial endophyte in Eucalyptus clones and their implications in water stress tolerance. Microbiol Res 2020; 241:126579. [PMID: 32861101 DOI: 10.1016/j.micres.2020.126579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
The genus Eucalyptus with over 747 species occurs in wide ecological range and is preferred for bioenergy plantations due to their short rotation, rapid growth and superior wood properties. They are planted in 22 million ha area and India is third largest planter of Eucalyptus. In the present study, the bacterial endophyte community in leaves of six Eucalyptus clones belonging to E. tereticornis and E. camaldulensis was assessed by sequencing the V3-V4 region of the bacterial 16S rRNA gene. The clones were selected based on their response to progressive water stress. A total of 4947 operational taxonomic units (OTUs) were obtained and the dominant phyla were Proteobacteria, Bacteroidetes and Firmicutes. Escherichia coli was enriched in all samples at species level. Comparison of endophyte diversity was conducted between the two species and across the water stress tolerant and susceptible clones. The alpha-diversity analysis revealed that species richness and diversity was high in E. camaldulensis and water stress susceptible clones. LefSe analysis predicted 69 and 54 significantly enriched taxonomic biomarkers between species and stress response groups respectively. A maximum of 49 taxonomic biomarkers were recorded in susceptible group and the significantly enriched species were Bacteroides thetaiotaomicron and Turicibacter sanguinis, while the tolerant group documented 5 biomarkers including oscillibacter sp. The presence of functional biomarkers was also assessed in both the groups. The findings of the present study provides an insight into the diversity of bacterial endophyte in Eucalyptus leaves and to our knowledge this is the first report on documenting the endophyte abundance in water stress responsive Eucalyptus clones.
Collapse
Affiliation(s)
| | - Sravanthi Burragoni
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Sivanantham Amrutha
- Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Muthusamy Muthupandi
- Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | | | - Veerasamy Sivakumar
- Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | | |
Collapse
|
13
|
Ibrahim A, Tanney JB, Fei F, Seifert KA, Cutler GC, Capretta A, Miller JD, Sumarah MW. Metabolomic-guided discovery of cyclic nonribosomal peptides from Xylaria ellisii sp. nov., a leaf and stem endophyte of Vaccinium angustifolium. Sci Rep 2020; 10:4599. [PMID: 32165688 PMCID: PMC7067778 DOI: 10.1038/s41598-020-61088-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
Fungal endophytes are sources of novel bioactive compounds but relatively few agriculturally important fruiting plants harboring endophytes have been carefully studied. Previously, we identified a griseofulvin-producing Xylaria species isolated from Vaccinium angustifolium, V. corymbosum, and Pinus strobus. Morphological and genomic analysis determined that it was a new species, described here as Xylaria ellisii. Untargeted high-resolution LC-MS metabolomic analysis of the extracted filtrates and mycelium from 15 blueberry isolates of this endophyte revealed differences in their metabolite profiles. Toxicity screening of the extracts showed that bioactivity was not linked to production of griseofulvin, indicating this species was making additional bioactive compounds. Multivariate statistical analysis of LC-MS data was used to identify key outlier features in the spectra. This allowed potentially new compounds to be targeted for isolation and characterization. This approach resulted in the discovery of eight new proline-containing cyclic nonribosomal peptides, which we have given the trivial names ellisiiamides A-H. Three of these peptides were purified and their structures elucidated by one and two-dimensional nuclear magnetic resonance spectroscopy (1D and 2D NMR) and high-resolution tandem mass spectrometry (HRMS/MS) analysis. The remaining five new compounds were identified and annotated by high-resolution mass spectrometry. Ellisiiamide A demonstrated Gram-negative activity against Escherichia coli BW25113, which is the first reported for this scaffold. Additionally, several known natural products including griseofulvin, dechlorogriseofulvin, epoxy/cytochalasin D, zygosporin E, hirsutatin A, cyclic pentapeptides #1–2 and xylariotide A were also characterized from this species.
Collapse
Affiliation(s)
- Ashraf Ibrahim
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4M1, Canada.,LifeMine Therapeutics, Cambridge, Massachusetts, 02140, USA
| | - Joey B Tanney
- Department of Chemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.,Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia, V8Z 1M5, Canada.,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada
| | - Fan Fei
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| | - Keith A Seifert
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada
| | - G Christopher Cutler
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Alfredo Capretta
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| | - J David Miller
- Department of Chemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Mark W Sumarah
- Department of Chemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada. .,London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada.
| |
Collapse
|
14
|
Jia Q, Qu J, Mu H, Sun H, Wu C. Foliar endophytic fungi: diversity in species and functions in forest ecosystems. Symbiosis 2020. [DOI: 10.1007/s13199-019-00663-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Masumoto H, Degawa Y. The effect of surface sterilization and the type of sterilizer on the genus composition of lichen-inhabiting fungi with notes on some frequently isolated genera. MYCOSCIENCE 2019. [DOI: 10.1016/j.myc.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
The needle mycobiome of Picea glauca – A dynamic system reflecting surrounding environment and tree phenological traits. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Tienaho J, Karonen M, Muilu-Mäkelä R, Wähälä K, Leon Denegri E, Franzén R, Karp M, Santala V, Sarjala T. Metabolic Profiling of Water-Soluble Compounds from the Extracts of Dark Septate Endophytic Fungi (DSE) Isolated from Scots Pine ( Pinus sylvestris L.) Seedlings Using UPLC-Orbitrap-MS. Molecules 2019; 24:E2330. [PMID: 31242564 PMCID: PMC6630819 DOI: 10.3390/molecules24122330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/14/2019] [Accepted: 06/22/2019] [Indexed: 01/23/2023] Open
Abstract
Endophytes are microorganisms living inside plant hosts and are known to be beneficial for the host plant vitality. In this study, we isolated three endophytic fungus species from the roots of Scots pine seedlings growing on Finnish drained peatland setting. The isolated fungi belonged to dark septate endophytes (DSE). The metabolic profiles of the hot water extracts of the fungi were investigated using Ultrahigh Performance Liquid Chromatography with Diode Array Detection and Electron Spray Ionization source Mass Spectrometry with Orbitrap analyzer (UPLC-DAD-ESI-MS-Orbitrap). Out of 318 metabolites, we were able to identify 220, of which a majority was amino acids and peptides. Additionally, opine amino acids, amino acid quinones, Amadori compounds, cholines, nucleobases, nucleosides, nucleotides, siderophores, sugars, sugar alcohols and disaccharides were found, as well as other previously reported metabolites from plants or endophytes. Some differences of the metabolic profiles, regarding the amount and identity of the found metabolites, were observed even though the fungi were isolated from the same host. Many of the discovered metabolites have been described possessing biological activities and properties, which may make a favorable contribution to the host plant nutrient availability or abiotic and biotic stress tolerance.
Collapse
Affiliation(s)
- Jenni Tienaho
- Faculty of Natural Sciences and Engineering, Tampere University, FI-33101 Tampere, Finland.
- Natural Resources Institute Finland (Luke), FI-00791 Helsinki, Finland.
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland.
| | | | - Kristiina Wähälä
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland.
| | | | - Robert Franzén
- School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, FI-00076 Espoo, Finland.
| | - Matti Karp
- Faculty of Natural Sciences and Engineering, Tampere University, FI-33101 Tampere, Finland.
| | - Ville Santala
- Faculty of Natural Sciences and Engineering, Tampere University, FI-33101 Tampere, Finland.
| | - Tytti Sarjala
- Natural Resources Institute Finland (Luke), FI-00791 Helsinki, Finland.
| |
Collapse
|
18
|
Sundaresan N, Jagan EG, Kathamuthu G, Pandi M. Internal transcribed spacer 2 (ITS2) molecular morphometric analysis based species delimitation of foliar endophytic fungi from Aglaia elaeagnoidea, Flacourtia inermis and Premna serratifolia. PLoS One 2019; 14:e0215024. [PMID: 30964914 PMCID: PMC6456209 DOI: 10.1371/journal.pone.0215024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/25/2019] [Indexed: 11/19/2022] Open
Abstract
Molecular morphometrics is an emerging third dimensional aspect of fungal species delimitation. They have been demonstrated to be more informative than conventional barcoding methods. Hence in this study, foliar endophytic fungal (FEF) assemblages in three Magnoliopsida plants were delimited using nuclear ribosomal internal transcribed spacer 2 (ITS2) sequence-secondary structural features based phylogenetic analysis, also known as molecular morphometrics. A total of 392 FEF isolates were obtained from the Aglaia elaeagnoidea, Flacourtia inermis, and Premna serratifolia leaves and grouped into 98 morphotypes. Among these host plants, P. serratifolia showed the maximum percentage of colonization frequency. Representatives of each morphotype was sequenced and subjected to further molecular characterization. The results revealed that morphotypes were belonged to the phylum of Ascomycota, distributed over two classes (Sordariomycetes (68.59%) and Dothideomycetes (31.41%)), 6 orders and 19 genera. Based on compensatory base changes (CBC) analysis and absolute identity of ITS2 structure, 21, 20 and 23 species were recognized from A. elaeagnoidea, F. inermis, and P. serratifolia respectively. Diversity indices were higher in A. elaeagnoidea, despite it accounted for a modest 16.8% of total isolates recorded in this study. The genus Colletotrichum was predominant in A. elaeagnoidea (39%) and P. serratifolia (48%). Similarly, Diaporthe (43%) was dominant in F. inermis. Several host-specific species were also observed. This study concludes that these plants host diverse species of Ascomycota. To the best of our knowledge, this is the first detailed report on FEF diversity from these plants. Also, the inclusion of ITS2 secondary structure information along with the sequence provides a further dimension to resolve the inherent problems in identification of fungal species.
Collapse
Affiliation(s)
- Natesan Sundaresan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Enthai Ganeshan Jagan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - GokulRaj Kathamuthu
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Mohan Pandi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
19
|
George TK, Houbraken J, Mathew L, Jisha MS. Penicillium setosum, a new species from Withania somnifera (L.) Dunal. Mycology 2019; 10:49-60. [PMID: 30834152 PMCID: PMC6394320 DOI: 10.1080/21501203.2018.1555868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023] Open
Abstract
Medicinal plants are considered as sources of novel and unexplored groups of endophytic microorganisms. A study on endophytic fungal species from the medicinal plant Withania somnifera (L.) Dunal resulted in the isolation of a Penicillium isolate (WSR 62) with antibiotic activity. Phylogenetic analysis showed that the isolate belongs to section Lanata-divaricata, and it is most closely related to P. javanicum. Subsequent detailed phylogenetic analyses using partial β-tubulin (BenA), calmodulin (CaM) and DNA-dependent RNA polymerase II (RPB2) gene sequences of a larger number of related strains revealed the distinctiveness of the isolate in the P. javanicum-clade. The isolate grows fast on Czapek yeast autolysate agar (CYA) and malt extract agar (MEA) incubated at 25°C, 30°C and 37°C. The obverse colony colour is dominated by the conspicuous production of cleistothecia and is greyish yellow on CYA and yellowish brown on MEA. Production of cleistothecia containing prominent spinose ascospores was present on all tested agar media. Based on the phylogenetic analysis and the phenotypic characterisation, strain WSR 62 from Withania is described here as a novel species named Penicillium setosum.
Collapse
Affiliation(s)
- Tijith K. George
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Linu Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - M. S. Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| |
Collapse
|
20
|
Forest Tree Microbiomes and Associated Fungal Endophytes: Functional Roles and Impact on Forest Health. FORESTS 2019. [DOI: 10.3390/f10010042] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Terrestrial plants including forest trees are generally known to live in close association with microbial organisms. The inherent features of this close association can be commensalism, parasitism or mutualism. The term “microbiota” has been used to describe this ecological community of plant-associated pathogenic, mutualistic, endophytic and commensal microorganisms. Many of these microbiota inhabiting forest trees could have a potential impact on the health of, and disease progression in, forest biomes. Comparatively, studies on forest tree microbiomes and their roles in mutualism and disease lag far behind parallel work on crop and human microbiome projects. Very recently, our understanding of plant and tree microbiomes has been enriched due to novel technological advances using metabarcoding, metagenomics, metatranscriptomics and metaproteomics approaches. In addition, the availability of massive DNA databases (e.g., NCBI (USA), EMBL (Europe), DDBJ (Japan), UNITE (Estonia)) as well as powerful computational and bioinformatics tools has helped to facilitate data mining by researchers across diverse disciplines. Available data demonstrate that plant phyllosphere bacterial communities are dominated by members of only a few phyla (Proteobacteria, Actinobacteria, Bacteroidetes). In bulk forest soil, the dominant fungal group is Basidiomycota, whereas Ascomycota is the most prevalent group within plant tissues. The current challenge, however, is how to harness and link the acquired knowledge on microbiomes for translational forest management. Among tree-associated microorganisms, endophytic fungal biota are attracting a lot of attention for their beneficial health- and growth-promoting effects, and were preferentially discussed in this review.
Collapse
|
21
|
Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Hamzah TNT, Lee SY, Hidayat A, Terhem R, Faridah-Hanum I, Mohamed R. Diversity and Characterization of Endophytic Fungi Isolated From the Tropical Mangrove Species, Rhizophora mucronata, and Identification of Potential Antagonists Against the Soil-Borne Fungus, Fusarium solani. Front Microbiol 2018; 9:1707. [PMID: 30090097 PMCID: PMC6068387 DOI: 10.3389/fmicb.2018.01707] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/09/2018] [Indexed: 11/25/2022] Open
Abstract
Rhizophora mucronata is an important ecosystem entity of the Malaysian mangrove forest. Since the species grows in a harsh environment, any organism that is isolated from this species would be of huge interest due to its potential in having novel bioactive compounds. In the present work, we isolated, identified and characterized, a total of 78 fungal isolates harboring inside the leaf tissues of R. mucronata. Molecular identification using the nuclear ribosomal DNA internal transcribe spacer (ITS) sequences returned with high similarity matches to known sequences in the GenBank. Maximum likelihood analysis revealed the phylogenetic relationship of all isolates from this study. Most of the dominating fungal endophytes were from the genera Pestalotiopsis, followed by Alternaria and Cladosporium. Six isolates representing the genera Alternaria, Fusarium, Nigrospora, Pestalotiopsis, Phoma, and Xylaria, were further screened for their antagonism activities. Dual culture test assay revealed their inhibition percentages against the phytopathogenic fungus Fusarium solani between 45-66%, and 0.8-23% when using non-volatile test assay. Of the six isolates, only Fusarium lateritium and Xylaria sp. showed antibacterial activities against the pathogenic bacteria, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, with the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) ranging from 0.5 to 2 mg/mL. The DPPH radical scavenging assay recorded a high level of antioxidant activity in Xylaria sp., 3-fold above that of F. lateritium. We demonstrate for the first time, two members belonging to the endophytic fungal community in the tropical mangrove species that have potential use as antagonists and antibacterial agents for future biotechnological applications.
Collapse
Affiliation(s)
- Tuan Noraida Tuan Hamzah
- Forest Biotech Laboratory, Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, Serdang, Malaysia
| | - Shiou Yih Lee
- Forest Biotech Laboratory, Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, Serdang, Malaysia
| | - Asep Hidayat
- Forest Microbiology Laboratory, Forestry and Environment Research, Development and Innovation Agency, Bogor, Indonesia
| | - Razak Terhem
- Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ibrahim Faridah-Hanum
- Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, Serdang, Malaysia
| | - Rozi Mohamed
- Forest Biotech Laboratory, Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
23
|
Koudelková B, Jarošová R, Koukol O. Are endophytic fungi from Rhododendron tomentosum preadapted for its essential oil? BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Kosawang C, Amby DB, Bussaban B, McKinney LV, Xu J, Kjær ED, Collinge DB, Nielsen LR. Fungal communities associated with species of Fraxinus tolerant to ash dieback, and their potential for biological control. Fungal Biol 2017; 122:110-120. [PMID: 29458714 DOI: 10.1016/j.funbio.2017.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
Ash dieback, caused by the fungus Hymenoscyphus fraxineus, has threatened ash trees in Europe for more than two decades. However, little is known of how endophytic communities affect the pathogen, and no effective disease management tools are available. While European ash (Fraxinus excelsior) is severely affected by the disease, other more distantly related ash species do not seem to be affected. We hypothesise that fungal endophytic communities of tolerant ash species can protect the species against ash dieback, and that selected endophytes have potential as biocontrol agents. These hypotheses were tested by isolating members of the fungal communities of five tolerant ash species, and identifying them using ITS regions. Candidate endophytes were tested by an in vitro antagonistic assay with H.fraxineus. From a total of 196 isolates we identified 9 fungal orders, 15 families, and 40 species. Fungi in orders Pleosporales, such as Boeremia exigua and Diaporthe spp., and Hypocreales (e.g., Fusarium sp.), were recovered in most communities, suggesting they are common taxa. The in vitro antagonistic assay revealed five species with high antagonistic activity against H. fraxineus. These endophytes were identified based on ITS region as Sclerostagonospora sp., Setomelanomma holmii, Epicoccum nigrum, B. exigua and Fusarium sp. Three of these taxa have been described previously as antagonists of plant pathogenic microbes, and are of interest for future studies of their potential as biological control agents against ash dieback, especially for valuable ash trees in parks and urban areas.
Collapse
Affiliation(s)
- Chatchai Kosawang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark.
| | - Daniel Buchvaldt Amby
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark; Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Boonsom Bussaban
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand; Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Thailand
| | - Lea Vig McKinney
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - Jing Xu
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - Erik D Kjær
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - David B Collinge
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Lene Rostgaard Nielsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| |
Collapse
|
25
|
|
26
|
Christian N, Whitaker BK, Clay K. Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Front Microbiol 2015; 6:869. [PMID: 26441846 PMCID: PMC4561359 DOI: 10.3389/fmicb.2015.00869] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022] Open
Abstract
The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant-fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant-fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration). The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research.
Collapse
Affiliation(s)
- Natalie Christian
- *Correspondence: Natalie Christian and Briana K. Whitaker, Evolution, Ecology and Behavior Program, Department of Biology, Indiana University, Jordan Hall, 1001 East 3rd Street, Bloomington, IN 47405, USA, ;
| | - Briana K. Whitaker
- *Correspondence: Natalie Christian and Briana K. Whitaker, Evolution, Ecology and Behavior Program, Department of Biology, Indiana University, Jordan Hall, 1001 East 3rd Street, Bloomington, IN 47405, USA, ;
| | | |
Collapse
|
27
|
Jin H, Yang X, Lu D, Li C, Yan Z, Li X, Zeng L, Qin B. Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach. Antonie Van Leeuwenhoek 2015; 108:835-50. [PMID: 26194722 DOI: 10.1007/s10482-015-0538-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
Abstract
The fungal endophytes associated with medicinal plants have been demonstrated as a reservoir with novel natural products useful in medicine and agriculture. It is desirable to explore the species composition, diversity and tissue specificity of endophytic fungi that inhabit in different tissues of medicinal plants. In this study, a culture-independent survey of fungal diversity in the rhizosphere, leaves, stems and roots of a toxic medicinal plant, Stellera chamaejasme L., was conducted by sequence analysis of clone libraries of the partial internal transcribed spacer region. Altogether, 145 fungal OTUs (operational taxonomic units), represented by 464 sequences, were found in four samples, of these 109 OTUs (75.2 %) belonging to Ascomycota, 20 (13.8 %) to Basidiomycota, 14 (9.7 %) to Zygomycota, 1 (0.7 %) to Chytridiomycota, and 1 (0.7 %) to Glomeromycota. The richness and diversity of fungal communities were strongly influenced by plant tissue environments, and the roots are associated with a surprisingly rich endophyte community. The endophyte assemblages associated with S. chamaejasme were strongly shaped by plant tissue environments, and exhibited a certain degree of tissue specificity. Our results suggested that a wide variety of fungal assemblages inhabit in S. chamaejasme, and plant tissue environments conspicuously influence endophyte community structure.
Collapse
Affiliation(s)
- Hui Jin
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Haňáčková Z, Koukol O, Štursová M, Kolařík M, Baldrian P. Fungal succession in the needle litter of a montane Picea abies forest investigated through strain isolation and molecular fingerprinting. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2014.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Yuan Z, Chen L. The role of endophytic fungal individuals and communities in the decomposition of Pinus massoniana needle litter. PLoS One 2014; 9:e105911. [PMID: 25157631 PMCID: PMC4144953 DOI: 10.1371/journal.pone.0105911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/29/2014] [Indexed: 01/21/2023] Open
Abstract
The role of fungal endophytes (FEs) as "pioneer" decomposers has recently been recognized; however, the extent to which FEs contribute to litter loss is less well understood. The genetic and enzymatic bases of FE-mediated decomposition have also rarely been addressed. The effects of populations and individuals (with an emphasis on two dominant Lophodermium taxa) of FEs on needle-litter decomposition were assessed for Pinus massoniana, a ubiquitous pine in southern China. Data from in vivo (microcosm) experiments indicated that the percentage of litter-mass loss triggered by FEs was linearly correlated with incubation time and approached 60% after seven months. In vitro decomposition tests also confirmed that endophytic Lophodermium isolates caused 14-22% mass loss within two months. Qualitative analysis of exoenzymes (cellulase and laccase, important for lignocellulose degradation) revealed that almost all of the Lophodermium isolates showed moderate or strong positive reactions. Furthermore, partial sequences of β-glucosidase (glycoside hydrolase family 3, GH3), laccase, and cellobiohydrolase (GH7) genes were amplified from Lophodermium isolates as "functional markers" to evaluate their potential for lignocellulolytic activity. Three different genes were detected, suggesting a flexible and delicate decomposition system rich in FEs. Our work highlights the possibility that the saprophytism and endophytism of FEs may be prerequisites to initiating rapid decomposition and thus may be key in Fes' contribution to litter decomposition, at least in the early stage. Potential indicators of the presence of core fungal decomposers are also briefly discussed.
Collapse
Affiliation(s)
- Zhilin Yuan
- Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang Province, P. R. China
| | - Lianqing Chen
- Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang Province, P. R. China
| |
Collapse
|
30
|
Terhonen E, Keriö S, Sun H, Asiegbu FO. Endophytic fungi of Norway spruce roots in boreal pristine mire, drained peatland and mineral soil and their inhibitory effect on Heterobasidion parviporum in vitro. FUNGAL ECOL 2014. [DOI: 10.1016/j.funeco.2014.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Vaz AB, Fontenla S, Rocha FS, Brandão LR, Vieira ML, de Garcia V, Góes-Neto A, Rosa CA. Fungal endophyte β-diversity associated with Myrtaceae species in an Andean Patagonian forest (Argentina) and an Atlantic forest (Brazil). FUNGAL ECOL 2014. [DOI: 10.1016/j.funeco.2013.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Lawson SP, Christian N, Abbot P. Comparative analysis of the biodiversity of fungal endophytes in insect-induced galls and surrounding foliar tissue. FUNGAL DIVERS 2013. [DOI: 10.1007/s13225-013-0268-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr Genet 2013; 59:153-66. [PMID: 23832271 DOI: 10.1007/s00294-013-0396-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 01/05/2023]
Abstract
This study aimed to perform a comparative analysis of the diversity of endophytic fungal communities isolated from the leaves and branches of Rhizophora mangle, Avicennia schaueriana and Laguncularia racemosa trees inhabiting two mangroves in the state of São Paulo, Brazil [Cananeia and Bertioga (oil spill-affected and unaffected)] in the summer and winter. Three hundred and forty-three fungi were identified by sequencing the ITS1-5.8S-ITS2 region of rDNA. Differences were observed in the frequencies of fungi isolated from the leaves and branches of these three different plant species sampled from the Bertioga oil spill-affected and the oil-unaffected mangrove sites in the summer and winter; these differences indicate a potential impact on fungal diversity in the study area due to the oil spill. The molecular identification of the fungi showed that the fungal community associated with these mangroves is composed of at least 34 different genera, the most frequent of which were Diaporthe, Colletotrichum, Fusarium, Trichoderma and Xylaria. The Shannon and the Chao1 indices [H'(95 %) = 4.00, H'(97 %) = 4.22, Chao1(95 %) = 204 and Chao1(97 %) = 603] indicated that the mangrove fungal community possesses a vast diversity and richness of endophytic fungi. The data generated in this study revealed a large reservoir of fungal genetic diversity inhabiting these Brazilian mangrove forests and highlighted substantial differences between the fungal communities associated with distinct plant tissues, plant species, impacted sites and sampling seasons.
Collapse
|
34
|
|
35
|
Zhang T, Zhang YQ, Liu HY, Wei YZ, Li HL, Su J, Zhao LX, Yu LY. Diversity and cold adaptation of culturable endophytic fungi from bryophytes in the Fildes Region, King George Island, maritime Antarctica. FEMS Microbiol Lett 2013; 341:52-61. [DOI: 10.1111/1574-6968.12090] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 01/03/2013] [Accepted: 01/21/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tao Zhang
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing; China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing; China
| | - Hong-Yu Liu
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing; China
| | - Yu-Zhen Wei
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing; China
| | - Hai-Long Li
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing; China
| | - Jing Su
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing; China
| | - Li-Xun Zhao
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing; China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing; China
| |
Collapse
|
36
|
|