1
|
Mishra S, Bentley-Hewitt K, McGhie T, Fraser K, Hedderley D, Martell S, Dinnan H, Monro J. Effects of Daily Ingestion of Two SunGold Kiwifruit for 6 Weeks on Metabolic and Inflammatory Biomarkers: A Randomized, Cross-Over, Exploratory Intervention Study. Foods 2023; 12:4236. [PMID: 38231672 DOI: 10.3390/foods12234236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Kiwifruit contain many components, some considered beneficial, such as vitamins, phytochemicals and dietary fibre, and others potentially harmful, such as fructose and glucose in fruit sugars. In a 6-week, randomised, crossover study aimed at exploring the net effects of daily consumption of kiwifruit, 23 healthy participants consumed two Actinidia chinensis var. chinensis 'Zesy002' (marketed as Zespri™ SunGold™ Kiwifruit) per day as part of their customary diet (intervention) or without kiwifruit (control) as their customary diet for 6 weeks in a cross-over study. Anthropometric data, venous blood, and urine samples were collected at the start and end of the 6-week intervention and control periods for the measurement of physical changes, plasma glucose, insulin, glycated haemoglobin, short-chain fatty acids, blood lipids, uric acid, inflammatory biomarkers, and urinary ascorbic acid. Variables were measured between the start and finish of interventions, and between intervention and control periods. Food diaries were completed on the 3 days before blood sampling to estimate dietary ascorbic acid and dietary fibre intakes. Despite urinary vitamin C and food diaries indicating compliance, and good precision in measurements, there were no appreciable changes in biomarkers during the study, either within or between intervention and control periods, that would indicate a change in health status. Thus, the sizes of any effects of kiwifruit ingestion were too small to become significant under the test conditions used, indicating a high probability that daily ingestion of two SunGold kiwifruit is safe with respect to metabolic health.
Collapse
Affiliation(s)
- Suman Mishra
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand
| | - Kerry Bentley-Hewitt
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand
| | - Tony McGhie
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand
| | - Karl Fraser
- AgResearch Limited, Palmerston North 4410, New Zealand
- Riddet Institute, University Avenue, Fitzherbert, Palmerston North 4474, New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand
| | - Sheridan Martell
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand
| | - Hannah Dinnan
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand
| | - John Monro
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand
- Riddet Institute, University Avenue, Fitzherbert, Palmerston North 4474, New Zealand
| |
Collapse
|
2
|
Kynkäänniemi E, Lahtinen MH, Jian C, Salonen A, Hatanpää T, Mikkonen KS, Pajari AM. Gut microbiota can utilize prebiotic birch glucuronoxylan in production of short-chain fatty acids in rats. Food Funct 2022; 13:3746-3759. [DOI: 10.1039/d1fo03922a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Birch-derived polyphenol and fiber (glucuronoxylan, GX)-rich extract and highly purified GX-rich extract support the growth of beneficial gut bacteria, suppress the harmful ones, and increase the production of total short-chain fatty acids (SCFA).
Collapse
Affiliation(s)
- Emma Kynkäänniemi
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Maarit H. Lahtinen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Timo Hatanpää
- Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland
| | - Kirsi S. Mikkonen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65, 00014, Finland
| | - Anne-Maria Pajari
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
3
|
Paturi G, Mishra S, Hedderley DI, Monro JA. Gut microbiota responses to dietary fibre sources in rats fed starch-based or quasi-human background diets. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
4
|
Paturi G, Butts CA, Stoklosinski H, Herath TD, Monro JA. Short-term feeding of fermentable dietary fibres influences the gut microbiota composition and metabolic activity in rats. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Gunaranjan Paturi
- The New Zealand Institute for Plant and Food Research Limited; Private Bag 92169 Auckland 1142 New Zealand
| | - Christine A. Butts
- The New Zealand Institute for Plant and Food Research Limited; Private Bag 11600 Palmerston North 4442 New Zealand
| | - Halina Stoklosinski
- The New Zealand Institute for Plant and Food Research Limited; Private Bag 11600 Palmerston North 4442 New Zealand
| | - Thanuja D. Herath
- The New Zealand Institute for Plant and Food Research Limited; Private Bag 11600 Palmerston North 4442 New Zealand
| | - John A. Monro
- The New Zealand Institute for Plant and Food Research Limited; Private Bag 11600 Palmerston North 4442 New Zealand
| |
Collapse
|
5
|
Monro JA, Paturi G, Mishra S. Effects of kiwifruit and mixed dietary fibre on faecal properties and microbiota in rats: a dose-response analysis. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- John A. Monro
- The New Zealand Institute for Plant and Food Research Limited; Private Bag 11600 Palmerston North 4442 New Zealand
| | - Gunaranjan Paturi
- The New Zealand Institute for Plant and Food Research Limited; Private Bag 92169 Auckland 1142 New Zealand
| | - Suman Mishra
- The New Zealand Institute for Plant and Food Research Limited; Private Bag 11600 Palmerston North 4442 New Zealand
| |
Collapse
|
6
|
Capuano E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit Rev Food Sci Nutr 2017; 57:3543-3564. [DOI: 10.1080/10408398.2016.1180501] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Edoardo Capuano
- Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
7
|
Lovegrove A, Edwards CH, De Noni I, Patel H, El SN, Grassby T, Zielke C, Ulmius M, Nilsson L, Butterworth PJ, Ellis PR, Shewry PR. Role of polysaccharides in food, digestion, and health. Crit Rev Food Sci Nutr 2017; 57:237-253. [PMID: 25921546 PMCID: PMC5152545 DOI: 10.1080/10408398.2014.939263] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 12/19/2022]
Abstract
Polysaccharides derived from plant foods are major components of the human diet, with limited contributions of related components from fungal and algal sources. In particular, starch and other storage carbohydrates are the major sources of energy in all diets, while cell wall polysaccharides are the major components of dietary fiber. We review the role of these components in the human diet, including their structure and distribution, their modification during food processing and effects on functional properties, their behavior in the gastrointestinal tract, and their contribution to healthy diets.
Collapse
Affiliation(s)
- A. Lovegrove
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - C. H. Edwards
- King's College London, Diabetes and Nutritional Sciences Division, School of Agriculture, Policy and Development, London, United Kingdom
| | - I. De Noni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - H. Patel
- King's College London, Diabetes and Nutritional Sciences Division, School of Agriculture, Policy and Development, London, United Kingdom
| | - S. N. El
- Food Engineering Department, Nutrition Section, Ege University, Izmir, Turkey
| | - T. Grassby
- King's College London, Diabetes and Nutritional Sciences Division, School of Agriculture, Policy and Development, London, United Kingdom
| | - C. Zielke
- Food Colloids Group, Department of Food Engineering, Technology and Nutrition, Faculty of Engineering LTH, Lund University, Lund, Sweden
| | - M. Ulmius
- Solve Research and Consultancy AB, Lund, Sweden
| | - L. Nilsson
- Food Colloids Group, Department of Food Engineering, Technology and Nutrition, Faculty of Engineering LTH, Lund University, Lund, Sweden
| | - P. J. Butterworth
- King's College London, Diabetes and Nutritional Sciences Division, School of Agriculture, Policy and Development, London, United Kingdom
| | - P. R Ellis
- King's College London, Diabetes and Nutritional Sciences Division, School of Agriculture, Policy and Development, London, United Kingdom
| | - P. R. Shewry
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, United Kingdom
- Department of Agriculture, Reading University, Whiteknights, Reading, Berkshire, United Kingdom
| |
Collapse
|
8
|
Monro J, Mishra S, Redman C, Somerfield S, Ng J. Vegetable dietary fibres made with minimal processing improve health-related faecal parameters in a valid rat model. Food Funct 2016; 7:2645-54. [DOI: 10.1039/c5fo01526j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural components in tissues of minimally processed vegetables substantially increase faecal bulk and hydration capacity much more than fermentable fibres.
Collapse
Affiliation(s)
- John Monro
- The New Zealand Institute for Plant & Food Research Limited
- Palmerston North
- New Zealand
| | - Suman Mishra
- The New Zealand Institute for Plant & Food Research Limited
- Palmerston North
- New Zealand
| | - Claire Redman
- The New Zealand Institute for Plant & Food Research Limited
- Palmerston North
- New Zealand
| | - Sheryl Somerfield
- The New Zealand Institute for Plant & Food Research Limited
- Palmerston North
- New Zealand
| | - Jovyn Ng
- The New Zealand Institute for Plant & Food Research Limited
- Palmerston North
- New Zealand
| |
Collapse
|
9
|
Sims IM, Monro JA. Fiber: composition, structures, and functional properties. ADVANCES IN FOOD AND NUTRITION RESEARCH 2013; 68:81-99. [PMID: 23394983 DOI: 10.1016/b978-0-12-394294-4.00005-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Kiwifruit dietary fiber consists of cell-wall polysaccharides that are typical of the cell walls of many dicotyledonous fruits, being composed of pectic polysaccharides, hemicelluloses, and cellulose. The kiwifruit pectic polysaccharides consist of homo- and rhamnogalacturonans with various neutral, (arabino)-galactan side chains, while the hemicelluloses are mostly xyloglucan and xylan. The proportions of pectic polysaccharide, hemicellulose, and cellulose in both green 'Hayward' and 'Zespri® Gold' are similar and are little affected by in vitro exposure to gastric and small intestinal digestion. The hydration properties of the kiwifruit-swelling and water retention capacity-are also unaffected by foregut digestion, indicating that the functional properties of kiwifruit fiber survive in the foregut. However, in the hindgut, kiwifruit fiber is fermented, but whole kiwifruit consumed in association with slowly fermented fiber leads to distal displacement of fermentation, indicating that hindgut benefits of kiwifruit may result from its interaction with other dietary sources of fiber.
Collapse
Affiliation(s)
- Ian M Sims
- Industrial Research Limited, Lower Hutt, New Zealand
| | | |
Collapse
|
10
|
Gélinas P. Preventing constipation: a review of the laxative potential of food ingredients. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.03207.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pierre Gélinas
- Food Research and Development Centre; Agriculture and Agri-Food Canada; 3600 Casavant Blvd. West; Saint-Hyacinthe; Quebec; J2S 8E3; Canada
| |
Collapse
|
11
|
Paturi G, Nyanhanda T, Butts CA, Herath TD, Monro JA, Ansell J. Effects of Potato Fiber and Potato-Resistant Starch on Biomarkers of Colonic Health in Rats Fed Diets Containing Red Meat. J Food Sci 2012; 77:H216-23. [DOI: 10.1111/j.1750-3841.2012.02911.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Monro JA, Paturi G, Butts CA, Young W, De Guzman CE, McLachlan A, Roy NC, Ansell J. Prebiotic effects of fermentable carbohydrate polymers may be modulated by faecal bulking of non-fermentable polysaccharides in the large bowel of rats. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2011.02929.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|