1
|
Tuning with Phosphorylcholine Grafts Improves the Physicochemical Properties of PLL/pDNA Nanoparticles at Neutral pH. Macromol Res 2019. [DOI: 10.1007/s13233-020-8019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
2
|
Li Q, Hao X, Zaidi SSA, Guo J, Ren X, Shi C, Zhang W, Feng Y. Oligohistidine and targeting peptide functionalized TAT-NLS for enhancing cellular uptake and promoting angiogenesis in vivo. J Nanobiotechnology 2018; 16:29. [PMID: 29580233 PMCID: PMC5870920 DOI: 10.1186/s12951-018-0358-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/19/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Gene therapy has been developed and used in medical treatment for many years, especially for the enhancement of endothelialization and angiogenesis. But slow endosomal escape rate is still one of the major barriers to successful gene delivery. In order to evaluate whether introducing oligohistidine (Hn) sequence into gene carriers can promote endosomal escape and gene transfection or not, we designed and synthesized Arg-Glu-Asp-Val (REDV) peptide functionalized TAT-NLS-Hn (TAT: typical cell-penetrating peptide, NLS: nuclear localization signals, Hn: oligohistidine sequence, n: 4, 8 and 12) peptides with different Hn sequence lengths. pEGFP-ZNF580 (pZNF580) was condensed by these peptides to form gene complexes, which were used to transfect human umbilical vein endothelial cells (HUVECs). RESULTS MTT assay showed that the gene complexes exhibited low cytotoxicity for HUVECs. The results of cellular uptake and co-localization ratio demonstrated that the gene complexes prepared from TAT-NLS-Hn with long Hn sequence (n = 12) benefited for high internalization efficiency of pZNF580. In addition, the results of western blot analysis and PCR assay of REDV-TAT-NLS-H12/pZNF580 complexes showed significantly enhanced gene expression at protein and mRNA level. Wound healing assay and transwell migration assay also confirmed the improved proliferation and migration ability of the transfected HUVECs by these complexes. Furthermore, the in vitro and in vivo angiogenesis assay illustrated that these complexes could promote the tube formation ability of HUVECs. CONCLUSION The above results indicated that the delivery efficiency of pZNF580 and its expression could be enhanced by introducing Hn sequence into gene carriers. The Hn sequence in REDV-TAT-NLS-Hn is beneficial for high gene transfection. These REDV and Hn functionalized TAT-NLS peptides are promising gene carriers in gene therapy.
Collapse
Affiliation(s)
- Qian Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xuefang Hao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Syed Saqib Ali Zaidi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin, 300350, China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.,Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin, 300350, China
| | - Changcan Shi
- School of Ophthalmology, & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325011, Zhejiang, China.,Wenzhou Institute of Biomaterials and Engineering, CNITECH, CAS, Wenzhou, 325011, Zhejiang, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China. .,Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin, 300350, China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
4
|
Wen Y, Guo Z, Du Z, Fang R, Wu H, Zeng X, Wang C, Feng M, Pan S. Serum tolerance and endosomal escape capacity of histidine-modified pDNA-loaded complexes based on polyamidoamine dendrimer derivatives. Biomaterials 2012; 33:8111-21. [PMID: 22898182 DOI: 10.1016/j.biomaterials.2012.07.032] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/15/2012] [Indexed: 12/31/2022]
Abstract
Aiming to aid polyamidoamine (PAMAM, generation 4, PG4) to overcome gene delivery barriers like extrinsic serum inhibition, intrinsic cytotoxicity and lysosome digestion, histidine motifs modified PAMAM was prepared. The histidine activated PAMAM generation 4 (HPG4) was synthesized via aminolysis reaction and characterized by 1H NMR spectrum and MALDI-TOF-MS. Cytotoxicity profiles of HPG4 on MD-MB-231 cells were significantly improved in the form of polymer and polymer/DNA complexes comparing to PG4. The luciferase protein expression level of HPG4 was 20-, 2.7- and 1.2- fold higher than that of PG4, SuperFect and PEI 25k. Most importantly, flow cytometry and gene transfection studies showed that histidine motifs of HPG4 not only acted as enhancer for faster cellular uptake, but also played an important role on enhancing serum tolerance of the system on cellular uptake and transfection. Among the serum concentrations of 10%-50%, HPG4 showed 10-100 folds higher transfection efficiency than PG4. Intracellular fate observation conducted by confocal microscope provided visual and quantitative evidence that endsomal escape efficiency of HPG4 system was higher than that of PG4. Lastly, the endosomal escape mechanism of HPG4 system was analyzed by endosome destabilization and proton pump inhibition treatment. Collectively, compared to PG4/pDNA, HPG4/pDNA showed improvement on cellular uptake, serum tolerance, cytotoxicity profile, and endosomal escape.
Collapse
Affiliation(s)
- Yuting Wen
- School of Pharmaceutical Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sun H, Gao C. Facile synthesis of multiamino vinyl poly(amino acid)s for promising bioapplications. Biomacromolecules 2010; 11:3609-16. [PMID: 21114313 DOI: 10.1021/bm101060m] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We presented a general and facile strategy to prepare biocompatible multiamino polymers. Series of new monomers were synthesized by esterification of 2-hydroxyethyl methacrylate (HEMA) and Boc-amino acids, such as Boc-l-phenylalanine, Boc-glycine, Boc-l-alanine, Boc-l-valine, and Boc-l-lysine. Subsequent vinyl polymerization of monomers gave rise to vinyl poly(amino acid)s with a side primary amino group at each unit if deprotected. Both atom transfer radical polymerization (ATRP) and conventional free radical polymerization (FRP) were employed to prepare the multiamino polymers. A well controlled effect upon molecular weight with the standard first-order kinetics was achieved in cases of ATRP, and high molecular weight polymers were obtained via FRP. MTT assay showed that cell survival rates for the multiamino polymers were almost maintained above 90% and that their cytotoxicities were much lower than that of linear PEI (PEI 25000). Zeta potential measurements demonstrated that the vinyl poly(amino acid)s are electropositive, and AFM measurements showed that the vinyl poly(amino acid)s could tightly condense DNA into granular structures at a suitable concentration. The combination of facile availability, controlled productivity, low cytotoxicity and strong binding ability with DNA promises the great potential of the novel multiamino polymers in bioapplications.
Collapse
Affiliation(s)
- Haiyan Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, People's Republic of China
| | | |
Collapse
|