1
|
Makhathini SS, Mdanda S, Kondiah PJ, Kharodia ME, Rumbold K, Alagidede I, Pathak Y, Bulbulia Z, Rants’o TA, Kondiah PPD. Biomedicine Innovations and Its Nanohydrogel Classifications. Pharmaceutics 2022; 14:2839. [PMID: 36559335 PMCID: PMC9787506 DOI: 10.3390/pharmaceutics14122839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
As one of the most cutting-edge and promising polymer crosslinked network nanoparticle systems. Polymer nano-sized hydrogels (nanogels) have been a hot topic in the biomedical field over the last few decades. Due to their unique characteristics, which include their relatively high drug encapsulation efficiency, ease of preparation, high tunability, low toxicity, high stability in serum and responsive behavior to a range of stimuli to facilitate drug release. Nanogels are thought to be the next generation of drug delivery systems that can completely change the way that drug delivery systems have an impact on patients' lives. Nanogels have demonstrated significant potential in a variety of fields, including chemotherapy, diagnosis, organ targeting, and delivery of bioactive molecules of different dimensions. However, the lack of substantial clinical data from nanogels becomes one of the major barriers to translating the nanogel concept into a practical therapeutic application for many disease conditions. In addition, nanogel safety profiles have been the major concern that hinders it advancement to the clinical trial phase. This review aims to emphasize the unique properties of nanogels as delivery systems for a variety of bioactive molecules over other nano-delivery systems. Also, this review attempts to give insight into the recent progress in nanogels as a carrier in the field of nanomedicine to overcome complex biological barriers. Relevant scientific data and clinical rationale for the development and the potential use of nanogel as a carrier for targeted therapeutic interventions are discussed. Finally, the concluding points of this review highlight the importance of understanding the long-term toxicity profile of nanogel within the biological system to fully understand their biocompatibility.
Collapse
Affiliation(s)
- Sifiso S. Makhathini
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Sipho Mdanda
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pariksha J. Kondiah
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Moosa E. Kharodia
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Karl Rumbold
- FH Campus Wien, University of Applied Sciences, Vienna, Höchstädtpl. 6, 1200 Wien, Austria
| | - Imhotep Alagidede
- Simon Diedong Dombo University of Business and Integrated Development Studies, Bamahu Box WA64 Wa, Upper West Region, Ghana
- Wits Business School, University of the Witwatersrand, 2 St Davids Pl &, St Andrew Rd, Parktown, Johannesburg 2193, South Africa
| | - Yashwant Pathak
- USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MDC 030, Tampa, FL 33612-4749, USA
- Faculty of Pharmacy, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Zain Bulbulia
- Policy Research & Advisory Services Branch, Gauteng Office of Premier, 1 Central Place 30 Rahima Moosa Street Newtown, Johannesburg 2113, South Africa
| | - Thankhoe A. Rants’o
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pierre P. D. Kondiah
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
- USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MDC 030, Tampa, FL 33612-4749, USA
- Pearson College London Alumni (Pearson plc), London WC1V 7BH, UK
| |
Collapse
|
2
|
Tran TN, Piogé S, Fontaine L, Pascual S. Hydrogen‐Bonding UCST‐Thermosensitive Nanogels by Direct Photo‐RAFT Polymerization‐Induced Self‐Assembly in Aqueous Dispersion. Macromol Rapid Commun 2020; 41:e2000203. [DOI: 10.1002/marc.202000203] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Thi Nga Tran
- Institut des Molécules et Matériaux du MansUMR 6283 CNRS–Le Mans Université Avenue Olivier Messiaen Le Mans Cedex 72085 France
| | - Sandie Piogé
- Institut des Molécules et Matériaux du MansUMR 6283 CNRS–Le Mans Université Avenue Olivier Messiaen Le Mans Cedex 72085 France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du MansUMR 6283 CNRS–Le Mans Université Avenue Olivier Messiaen Le Mans Cedex 72085 France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du MansUMR 6283 CNRS–Le Mans Université Avenue Olivier Messiaen Le Mans Cedex 72085 France
| |
Collapse
|
3
|
Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin MR. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 2019; 92:1-18. [PMID: 31096042 PMCID: PMC6661071 DOI: 10.1016/j.actbio.2019.05.018] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
Nanogels are three-dimensional nanoscale networks formed by physically or chemically cross-linking polymers. Nanogels have been explored as drug delivery systems due to their advantageous properties, such as biocompatibility, high stability, tunable particle size, drug loading capacity, and possible modification of the surface for active targeting by attaching ligands that recognize cognate receptors on the target cells or tissues. Nanogels can be designed to be stimulus responsive, and react to internal or external stimuli such as pH, temperature, light and redox, thus resulting in the controlled release of loaded drugs. This "smart" targeting ability prevents drug accumulation in non-target tissues and minimizes the side effects of the drug. This review aims to provide an introduction to nanogels, their preparation methods, and to discuss the design of various stimulus-responsive nanogels that are able to provide controlled drug release in response to particular stimuli. STATEMENT OF SIGNIFICANCE: Smart and stimulus-responsive drug delivery is a rapidly growing area of biomaterial research. The explosive rise in nanotechnology and nanomedicine, has provided a host of nanoparticles and nanovehicles which may bewilder the uninitiated reader. This review will lay out the evidence that polymeric nanogels have an important role to play in the design of innovative drug delivery vehicles that respond to internal and external stimuli such as temperature, pH, redox, and light.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Sepideh Ahmadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Division of Diseases, Advanced Technologies Research Group, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|
4
|
Chen T, Zhang S, Hua L, Xu Z, Zhou L, Wang J. Triphenylphosphine-Containing Thermo-Responsive Copolymers: Synthesis, Characterization and Catalysis Application. Macromol Res 2019. [DOI: 10.1007/s13233-019-7133-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Fathi M, Majidi S, Zangabad PS, Barar J, Erfan-Niya H, Omidi Y. Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med Res Rev 2018; 38:2110-2136. [DOI: 10.1002/med.21506] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Sima Majidi
- Faculty of Chemical and Petroleum Engineering; University of Tabriz; Tabriz Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Pharmaceutics, Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering; University of Tabriz; Tabriz Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Pharmaceutics, Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
6
|
Fathi M, Sahandi Zangabad P, Barar J, Aghanejad A, Erfan-Niya H, Omidi Y. Thermo-sensitive chitosan copolymer-gold hybrid nanoparticles as a nanocarrier for delivery of erlotinib. Int J Biol Macromol 2018; 106:266-276. [DOI: 10.1016/j.ijbiomac.2017.08.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 11/24/2022]
|
7
|
Sattari M, Fathi M, Daei M, Erfan-Niya H, Barar J, Entezami AA. Thermoresponsive graphene oxide - starch micro/nanohydrogel composite as biocompatible drug delivery system. BIOIMPACTS : BI 2017; 7:167-175. [PMID: 29159144 PMCID: PMC5684508 DOI: 10.15171/bi.2017.20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/09/2017] [Accepted: 07/23/2017] [Indexed: 12/20/2022]
Abstract
Introduction: Stimuli-responsive hydrogels, which indicate a significant response to the environmental change (e.g., pH, temperature, light, …), have potential applications for tissue engineering, drug delivery systems, cell therapy, artificial muscles, biosensors, etc. Among the temperature-responsive materials, poly (N-isopropylacrylamide) (PNIPAAm) based hydrogels have been widely developed and their properties can be easily tailored by manipulating the properties of the hydrogel and the composite material. Graphene oxide (GO), as a multifunctional and biocompatible nanosheet, can efficiently improve the mechanical strength and response rate of PNIPAAm-based hydrogels. Here, hydrogel composites (HCs) of PNIPAAm with GO was developed using the modified starch as a biodegradable cross-linker. Methods: Micro/nanohydrogel composites were synthesized by free radical polymerization of NIPAAm in the suspension of different feed ratio of GO using maleate-modified starch (St-MA) as cross-linker and Tetrakis (hydroxymethyl) phosphonium chloride (THPC) as a strong oxygen scavenger. The HCs were characterized by FT-IR, DSC, TGA, SEM, and DLS. Also, the phase transition, swelling/deswelling behavior, hemocompatibility and biocompatibility of the synthesized HCs were investigated. Results: The thermal stability, phase transition temperature and internal network crosslinking of HCs increases with increasing of the GO feed ratio. Also, the swelling/deswelling, hemolysis, and MTT assays studies confirmed that the HCs are a fast response, hemocompatible and biocompatible materials. Conclusion: The employed facile approach for the synthesis of HCs yields an intelligent material with great potential for biomedical applications.
Collapse
Affiliation(s)
- Mina Sattari
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Daei
- Department of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Hamid Erfan-Niya
- Department of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Entezami
- Laboratory of Polymer Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
8
|
Malekzad H, Zangabad PS, Mirshekari H, Karimi M, Hamblin MR. Noble metal nanoparticles in biosensors: recent studies and applications. NANOTECHNOLOGY REVIEWS 2017; 6:301-329. [PMID: 29335674 PMCID: PMC5766271 DOI: 10.1515/ntrev-2016-0014] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The aim of this review is to cover advances in noble metal nanoparticle (MNP)-based biosensors and to outline the principles and main functions of MNPs in different classes of biosensors according to the transduction methods employed. The important biorecognition elements are enzymes, antibodies, aptamers, DNA sequences, and whole cells. The main readouts are electrochemical (amperometric and voltametric), optical (surface plasmon resonance, colorimetric, chemiluminescence, photoelectrochemical, etc.) and piezoelectric. MNPs have received attention for applications in biosensing due to their fascinating properties. These properties include a large surface area that enhances biorecognizers and receptor immobilization, good ability for reaction catalysis and electron transfer, and good biocompatibility. MNPs can be used alone and in combination with other classes of nanostructures. MNP-based sensors can lead to significant signal amplification, higher sensitivity, and great improvements in the detection and quantification of biomolecules and different ions. Some recent examples of biomolecular sensors using MNPs are given, and the effects of structure, shape, and other physical properties of noble MNPs and nanohybrids in biosensor performance are discussed.
Collapse
Affiliation(s)
- Hedieh Malekzad
- Faculty of Chemistry, Kharazmi University, South Mofatteh Ave, P.O. Box 15719-14911, Tehran, Iran; and Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran; and Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, 14588 Tehran, Iran
| | - Hamed Mirshekari
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Exp. Way, P.O. Box 14665-354, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; and Division of Health Sciences and Technology, Harvard-MIT, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Luo YL, Zhang XY, Fu JY, Xu F, Chen YS. Novel temperature and pH dual-sensitive PNIPAM/CMCS/MWCNT semi-IPN nanohybrid hydrogels: Synthesis, characterization, and DOX drug release. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1233418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, P. R. China
| | - Xue-Yin Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, P. R. China
| | - Jing-Yu Fu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, P. R. China
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, P. R. China
| | - Ya-Shao Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, P. R. China
| |
Collapse
|
10
|
Karimi M, Zangabad PS, Mehdizadeh F, Malekzad H, Ghasemi A, Bahrami S, Zare H, Moghoofei M, Hekmatmanesh A, Hamblin MR. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. NANOSCALE 2017; 9:1356-1392. [PMID: 28067384 PMCID: PMC5300024 DOI: 10.1039/c6nr07315h] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanocages (NCs) have emerged as a new class of drug-carriers, with a wide range of possibilities in multi-modality medical treatments and theranostics. Nanocages can overcome such limitations as high toxicity caused by anti-cancer chemotherapy or by the nanocarrier itself, due to their unique characteristics. These properties consist of: (1) a high loading-capacity (spacious interior); (2) a porous structure (analogous to openings between the bars of the cage); (3) enabling smart release (a key to unlock the cage); and (4) a low likelihood of unfavorable immune responses (the outside of the cage is safe). In this review, we cover different classes of NC structures such as virus-like particles (VLPs), protein NCs, DNA NCs, supramolecular nanosystems, hybrid metal-organic NCs, gold NCs, carbon-based NCs and silica NCs. Moreover, NC-assisted drug delivery including modification methods, drug immobilization, active targeting, and stimulus-responsive release mechanisms are discussed, highlighting the advantages, disadvantages and challenges. Finally, translation of NCs into clinical applications, and an up-to-date assessment of the nanotoxicology considerations of NCs are presented.
Collapse
Affiliation(s)
- Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hedieh Malekzad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Faculty of Chemistry, Kharazmi University of Tehran, Tehran, Iran
| | - Alireza Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Zare
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Mohsen Moghoofei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Hekmatmanesh
- Laboratory of Intelligent Machines, Lappeenranta University of Technology, 53810, Finland
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
11
|
Fathi M, Entezami AA, Arami S, Rashidi MR. Preparation ofN-Isopropylacrylamide/Itaconic Acid Magnetic Nanohydrogels by Modified Starch as a Crosslinker for Anticancer Drug Carriers. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2014.996703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Saleh-Ghadimi L, Fathi M, Entezami AA. Heteroarm Star-Shaped Poly (N-isopropylacryamide-co-itaconic acid) Copolymer Prepared by Glucose Core as ATRP Initiator. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2013.830251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
|