1
|
Lu C, Feng YW, He Y, Xu L, Wang WL, Yang C, Shi X, Gao H, Zhang Y. Foods for Aromatic Amino Acid Metabolism Disorder: A Review of Current Status, Challenges and Opportunities. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2122993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Chenhui Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong-Wei Feng
- Technology Innovation Center of Special Food for State Market Regulation, Wuxi Food Safety Inspection and Test Center, Wuxi, China
| | - Yongxi He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lizhi Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wen-Long Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xueli Shi
- Shijiazhuang City Maternal and Child Health Hospital, Shijiazhuang, Hebei, China
| | - Hui Gao
- Shijiazhuang City Maternal and Child Health Hospital, Shijiazhuang, Hebei, China
| | - Yi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
LU C, ZHANG Y, SU Y, WANG W, FENG Y. [Advances in separation and analysis of aromatic amino acids in food]. Se Pu 2022; 40:686-693. [PMID: 35903835 PMCID: PMC9404096 DOI: 10.3724/sp.j.1123.2022.04011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Amino acids are important building blocks of proteins in the human body, which are involved in many metabolic pathways. Patients with metabolic diseases such as phenylketonuria, tyrosinemia, and hepatic encephalopathy are genetically defective and cannot metabolize aromatic amino acids (AAA) in food; hence, a regular diet may lead to permanent physiological damage. For this reason, it is necessary to restrict the intake of AAA in their daily diet by limiting natural protein intake, while ensuring normal intake of low protein foods and supplementation with low-AAA protein equivalents. Sources of low-AAA protein equivalents currently rely on free amino acid complex mixtures and low-AAA peptides (also known as high-Fischer-ratio peptides), which have better absorption availability and palatability. AAA separation and analysis techniques are essential for the preparation and detection of low-AAA peptides. Researchers in this field have explored a variety of efficient adsorption materials to selectively remove AAA from complex protein hydrolysates and thus prepare low-AAA peptide foods, or to establish analysis strategies for AAA. Covering more than 70 publications on AAA removal and separation in the last decade from Web of Science Core Collection and China National Knowledge Infrastructure, this review analyzes the structural characteristics and physicochemical properties of AAA, and summarizes the technological progress of AAA removal based on adsorbents such as activated carbon and resin. The applications of two-dimensional nanomaterials, molecular imprinting, cyclodextrins, and metal-organic frameworks in AAA adsorption and analysis from three dimensions, i. e., sample pretreatment, chiral separation and adsorption sensing, are also reviewed. The mainstream adsorbents for AAA removal, such as activated carbon, still suffer from poor specificity and cause environmental pollution during post-use treatment. Existing AAA separating materials show impressive selective adsorption capability in food samples and chiral mixtures as well as high sensitivity in adsorption sensing. The development of an efficient detection technology for AAA may help in detecting trace AAA in food and in evaluating chiral AAA adulteration in food samples. By exploring the advantages and disadvantages of each type of technology, we provide support for the advancement of the removal and analysis techniques for AAA.
Collapse
|
3
|
Soleimanbeigi M, Dousti F, Hassanzadeh F, Mirian M, Varshosaz J, Kasesaz Y, Rostami M. Boron Phenyl Alanine Targeted Chitosan-PNIPAAm Core-Shell Thermo-Responsive Nanoparticles; Boosting Drug Delivery to Glioblastoma in BNCT. Drug Dev Ind Pharm 2022; 47:1607-1623. [DOI: 10.1080/03639045.2022.2032132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Monireh Soleimanbeigi
- Master Student of Medicinal Chemistry, Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dousti
- Master Student of Medicinal Chemistry, Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
| | - Yaser Kasesaz
- Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Centre and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Dousti F, Soleimanbeigi M, Mirian M, Varshosaz J, Hassanzadeh F, Kasesaz Y, Rostami M. Boron phenyl alanine targeted ionic liquid decorated chitosan nanoparticles for mitoxantrone delivery to glioma cell line. Pharm Dev Technol 2021; 26:899-909. [PMID: 34266344 DOI: 10.1080/10837450.2021.1955927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nanotechnology has revolutionized drug delivery in cancer treatment. In this study, novel efficient pH-responsive boron phenylalanine (BPA) targeted nanoparticles (NPs) based on ionic liquid modified chitosan have been introduced for selective mitoxantrone (MTO) delivery to the U87MG glioma cells. Urocanic acid (UA) and imidazolium (Im) based ionic liquids were used for structural modification simultaneously. The NPs were prepared by ionic gelation and fully characterized; the pH-responding and swelling index of NPs were studied carefully. The drug release was studied at a pH of 5.5 in comparison to the neutral state. Also, the cytotoxicity of loaded NPs was evaluated on U87MG glial cells, and cellular uptake was studied. The NPs were smaller than 250 nm, with a spherical pattern and acceptable uniformity with a zeta potential around +20 mV. The loading efficacy was about 85%, and most of the loaded MTO released at a pH of 5.5 after 48 h with a swelling-controlled mechanism. The NPs showed a relatively lower IC50 than the free MTO, and the BPA-targeted NPs have lower IC50 and better cellular uptake than non-targeted NPs in U87MG cells. More studies on this promising formula are on the way, and the results will be published soon.
Collapse
Affiliation(s)
- Fatemeh Dousti
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Monireh Soleimanbeigi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Science, Isfahan, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Kasesaz
- Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Centre and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Jiang W, Yang Y, Tao R, Jiang X, Zhou X, Zhou Z. Preparation of a novel chitosan-based biosorbent cross-linked with phenethylamine for adsorption of aromatic amino acids. Carbohydr Polym 2017; 176:236-245. [DOI: 10.1016/j.carbpol.2017.08.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/12/2017] [Accepted: 08/14/2017] [Indexed: 11/25/2022]
|